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Abstract

Following an example in [11], we show how to change one coordinate function of an almost
perfect nonlinear (APN) function in order to obtain new examples. It turns out that this is
a very powerful method to construct new APN functions. In particular, we show that our
approach can be used to construct a “non-quadratic” APN function. This new example is in
remarkable contrast to all recently constructed functions which have all been quadratic. An
equivalent function has been found independently by Brinkmann and Leander [7]. However,
they claimed that their function is CCZ equivalent to a quadratic one. In this paper we give
several reasons why this new function is not equivalent to a quadratic one.

1 Preliminaries

We consider functions F : F n
2 → F n

2 with “good” differential and linear properties. Motivated
by applications in cryptography, a lot of research has been done to construct functions which are
“as nonlinear as possible”. We discuss two possibilities to define nonlinearity: The first one uses
differential properties, the second measures the “distance” to linear functions.

Let us begin with the differential properties. Given F : F n
2 → F n

2 , we define

∆F (a, b) := |{x : F (x+ a)− F (x) = b}|.

We have ∆F (0, 0) = 2n, and ∆F (0, b) = 0 if b 6= 0.
Since we are working in fields of characteristic 2, we may replace the “−” by “+” and write

F (x+a)+F (x) instead of F (x+a)−F (x). We say that F is almost perfect nonlinear (APN)
if ∆F (a, b) ∈ {0, 2} for all a, b ∈ F n

2 , a 6= 0. Note that ∆F (a, b) ∈ {0, 2n} if F is linear, hence the
condition ∆F (a, b) ∈ {0, 2} identifies functions which are quite different from linear mappings. In
characteristic 2, it is impossible that ∆F (a, b) = 1: If x is a solution of F (x+ a)− F (x) = b, then
x+ a is another solution, so that all values of ∆F must be even. In the case of odd characteristic,
functions F : F n

q → F n
q with ∆F (a, b) = 1 for all a 6= 0 do exist; they are called perfect

nonlinear or planar. In the last few years, many new APN functions have been constructed.
The first example of a non-power mapping has been described in [27]. Infinite series are contained
in [5, 10, 11, 13, 16, 17]. Also some new planar functions have been found, see [15, 23, 37].

There may be a possibility for a unified treatment of (some of) these constructions in the even
and odd characteristic case. In particular, we suggest to look more carefully at the underlying
design of an APN function, similar to the designs corresponding to planar functions, which are
projective planes, see [30].

In this paper, we consider APN functions only. In Section 2, we discuss the problem how to
distinguish APN functions up to equivalence. We discuss the concept of affine, extended affine
and CCZ equivalence. We also introduce a certain design associated with an APN function, which
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can be used to distinguish inequivalent functions. In Theorem 7, we obtain a necessary condition
for an APN function to be crooked (see Definition 4).

In Section 3, we describe an idea due to Dillon for obtaining new APN functions from known
ones by changing a component function. We apply this switching construction to the known
examples of APN functions in small dimensions (n ≤ 9). The results are tabulated at the end
of the paper. In particular, we construct a new non-quadratic APN function (Theorem 11). We
compute several parameters (for instance automorphism groups) which are invariant under CCZ
equivalence. Section 4 contains some comments and problems concerning these invariants.

Another approach to nonlinearity is to measure the distance between linear functions h :
F n

2 → F2 and the component functions Fg : F n
2 → F2: Component functions are defined via

Fg(x) := g(F (x)) where g is a nonzero linear function F n
2 → F2. We denote the set of all linear

functions f : F n
2 → F2 by F̂ n

2 . The Hamming distance dH(f, g) between two Boolean functions
f, g : F n

2 → F2 is simply the number of x such that f(x) 6= g(x). The Hamming weight wH(f)
of a Boolean function f is the number of x with f(x) = 1.

We say that a function F is highly nonlinear if

min
f,g∈F̂ n

2 ,g 6=0
(dH(f, Fg), dH(f + 1, Fg)) (1)

is large, i.e. the component functions g ◦ F = Fg of F are as different as possible from all affine

linear functions f and f + 1, where f ∈ F̂ n
2 (here “◦” denotes the composition of functions).

Instead of investigating dH(f, Fg) and dH(f + 1, Fg), we may equivalently consider the Walsh
coefficients

WF (f, g) =
∑
x∈F n

2

(−1)(g◦F )(x)+f(x)

(sometimes we omit the subscript F ). We have

2n − 2dH(f, Fg) =WF (f, g) and 2n − 2dH(f + 1, Fg) = −WF (f, g).

This shows that the distances come in pairs d1 and d2 with d1+d2 = 2n. Instead of maximizing the
minimum of the dH(f, Fg), dH(f+1, Fg) with g 6= 0, we may equivalently minimize the maximum
of |W(f, g)|, g 6= 0.

The Walsh coefficients are basically the weights of the following code of length 2n: Let F :

F n
2 → F n

2 be any function. Define a matrix CF ∈ F(2n,2n)
2 as follows: The columns are the vectors(

x
F (x)

)
, x ∈ F n

2 . Then the rows of the matrix

CF =

(
· · · x · · ·
· · · F (x) · · ·

)
x∈F n

2

generate a binary code CF whose codewords are the vectors

v(f, g) = (f(x) + (g ◦ F )(x))x∈F n
2
,

where f and g are linear functions F n
2 → F2. Note that the 2n linear functions F n

2 → F2 can be
described by the inner products 〈c, x〉, c ∈ F n

2 . Hence, the vectors v(f, g) are indeed all the linear
combinations of the rows of CF .

It is easy to see that the Hamming weight wH(v(f, g)) of the codeword v(f, g) is related to the
Walsh coefficient W(f, g) as follows:

2n − 2wH(v(f, g)) =W(f, g).

If the code CF does not contain the vector (1, . . . , 1), we may add this vector as a row to CF . The
vector space generated by the rows of this extended matrix is called the extended code Cext

F
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associated to the function F . This construction means that we add the vectors w := v(f + 1, g)
to the code CF . If u := v(f, g), we have wH(u) + wH(w) = 2n and therefore

2n − 2wH(u) = −(2n − 2wH(w)),

which gives rise to the Walsh coefficients ±W(f, g). We note that the vector (1, . . . 1) is not
contained in CF if F is APN, see [8, 19], for instance.

The multiset of values WF (f, g) for all linear functions f, g is called the Walsh spectrum of
F .

The Walsh coefficients WF (f, 0) are

WF (f, 0) =

{
2n if f(x) = 0 for all x

0 otherwise.

Therefore, the Walsh coefficients WF (f, 0) do not depend on F . For this the reason, the Walsh
coefficients with g = 0 are sometimes excluded from the Walsh spectrum.

Usually, the Walsh spectrum is defined in terms of the trace function of a finite field. This
“finite field definition” is completely equivalent to ours. We have used the vector space definition
in order to emphasize that the Walsh spectrum (or the Walsh transformation) is just a property
of the additive group of F n

2 . If we identify F n
2 with the additive group of the finite field F2n , then

the linear mappings f : F n
2 → F2 are just the mappings fα defined by x 7→ tr(αx), where tr is the

usual trace function tr(x) :=
∑n−1
i=0 x

2i

. We have fα 6= fβ for α 6= β, and we define

WF (fα, fβ) =:WF (α, β).

We have WF (α, 0) = 0 if α 6= 0 and WF (0, 0) = 2n.
It is well known that there are α ∈ F2n and β ∈ F2n \ {0} such that

|WF (α, β)| ≥ 2(n+1)/2,

see [29], for instance. If n is odd, there are functions F with

|WF (α, β)| ≤ 2(n+1)/2

for all β 6= 0. Functions F : F n
2 → F n

2 with |WF (α, β)| ≤ 2(n+1)/2 for all β 6= 0 are called almost
bent (AB). Note that AB functions can exist only if n is odd. It is well known that any almost
bent function is also APN (see [20]), but not vice versa, see the comments below. However, any
quadratic APN function (see Definition 2) in F n

2 must be AB, see [19]. If a function F with
F (0) = 0 is AB, its Walsh spectrum is completely known:

{∗ 2n [1], 0 [(2n−1 + 1)(2n − 1)], ±2(n+1)/2 [(2n − 1)(2n−2 ± 2(n−3)/2)] ∗} (2)

(the values in brackets [ ] denote the multiplicities of the Walsh coefficients, and the notation
{∗ ∗} indicates multisets). Similarly, the Walsh spectra of the Gold APN’s (see Table 1) with n
even are completely known, too, see [21], for instance:

{∗ 2n [1], 0 [(2n − 1)(2n−2 + 1)], ±2(n+2)/2 [ 1
3 (2n − 1)(2n−3 ± 2(n−4)/2)],

±2n/2 [ 2
3 (2n − 1)(2n−1 ± 2(n−2)/2)] ∗}. (3)

We say that an APN function with F (0) = 0 and spectrum (2) (if n is odd) or (3) (if n is even)
has the classical Walsh spectrum. We want to emphasize that the APN property alone does
not determine the Walsh spectrum. APN functions may have quite different Walsh spectra. The
reader can find the classical spectra in [21], for instance. If F (0) 6= 0, the distribution of the
spectral values may be different, however the distribution of the absolute values does not change,
see the comments following Proposition 1.
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Exponents d Conditions Proven in

Gold functions 2i + 1 gcd(i, n) = 1 [28, 36]

Kasami functions 22i − 2i + 1 gcd(i, n) = 1 [31, 32]

Welch function 2t + 3 n = 2t + 1 [25]

Niho function 2t + 2
t
2 − 1, t even n = 2t + 1 [24]

2t + 2
3t+1

2 − 1, t odd

Inverse function 22t − 1 n = 2t + 1 [36]

Dobbertin function 24t + 23t + 22t + 2t − 1 n = 5t [26]

Table 1: Known APN power functions xd on F2n

Throughout this paper, we always use the identification of the additive group of the vector
space F n

2 with the additive group of the finite field F2n . Most APN and AB functions are defined
as polynomial functions over F2n , hence the constructions use the multiplicative structure of F2n .
However, the APN and AB property is just a property of the additive group of F2n .

In Table 1, we list all known power APN mappings on F2n which are known so far: The Welch
and Niho functions are also AB, the Gold and Kasami functions are AB if n is odd. It is known
that the inverse function and the Dobbertin function are not AB: The Walsh coefficients of the
inverse function have been determined in [34], those of the Dobbertin function in [18], and these
do not coincide with the values in (2) and (3). We note that the complete Walsh spectrum, i.e. the
Walsh coefficients together with their multiplicities, are still not known for these two functions.

There are two questions which arise quite naturally:

Problem 1. (1.) Is the list of APN power functions in Table 1 complete?
(2.) Are all these examples “different”?

We will discuss these questions in the next section.

2 Equivalence of APN mappings

Let us begin with the second part of the problem above. In order to describe whether two
functions F and H are equivalent, we introduce group ring notation. This notion is also quite
useful to describe the technique of “switching” an APN function. This is a very powerful tool to
construct new APN functions, as we will show in this paper.

Let F be an arbitrary field, and let (G,+) be an additively written abelian group (we are only
interested in abelian groups, so we do not care about the general case). The group algebra F[G]
consists of all “formal” sums ∑

g∈G
ag g, ag ∈ F.

We define componentwise addition∑
g∈G

ag g +
∑
g∈G

bg g :=
∑
g∈G

(ag + bg)g,

and multiplication by

∑
g∈G

ag g ·
∑
g∈G

bg g :=
∑
g∈G

(∑
h∈G

ah · bg−h

)
g.

Together with these two operations and the scalar multiplication λ
∑
g∈G agg :=

∑
g∈G(λag)g, the

set F[G] becomes an algebra, the so called group algebra. The dimension of this algebra as an
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F-vectorspace is |G|. Given a function F : F n
2 → F n

2 , we associate a group algebra element GF in
F[F n

2 × F n
2 ] with it:

GF :=
∑
v∈F n

2

(v, F (v)) in F[F n
2 × F n

2 ].

The coefficients of the group elements in GF are just 0 or 1. More generally, any subset T of a
group G can be identified with the element

∑
g∈T g, where the coefficients of all elements in T

are 1, and the coefficients of elements not in T are 0. Hence, GF is the group algebra element
corresponding to the “graph” of the function F , which consists of all pairs (v, F (v)), v ∈ F n

2 .
We have the following Lemma:

Lemma 1. A function F : F n
2 → F n

2 is APN if and only if

GF ·GF = 2n · (0, 0) + 2 ·DF in C[F n
2 × F n

2 ] (4)

for some subset DF ∈ (F n
2 × F n

2 ) \ {(0, 0)}.

Proof. The coefficient of (u, v) in GF ·GF is the number of pairs (x, F (x)) and (y, F (y)) such that
(x+ y, F (x) + F (y)) = (u, v). This is the number of solutions F (x) + F (y) = v where x+ y = u,
hence it is the number of solutions of F (x) + F (x+ u) = v. This integer is 2n for (u, v) = (0, 0),
otherwise it is 0 or 2 (since F is APN).

In (4), we may replace C by any field of characteristic 6= 2 if we add for some subset DF ∈
(F n

2 × F n
2 ) \ {(0, 0)} of size 2n−1 · (2n − 1).

We emphasize that G is additively written, but this addition is quite different from the addition
in the group algebra F[G]. If, for instance, A,B ⊂ G and A ∩ B = ∅, then A ∪ B is the subset
of G corresponding to A + B in F[G]. If g ∈ G, then A · g in F[G] corresponds to the subset
{a+ g : a ∈ A}. We call A · g a translate of A. It looks a bit awkward that the product A · g is
the set of sums a+ g with a ∈ A.

The ideal generated by GF in F2[F n
2 ×F n

2 ] is a subspace of the 22n-dimensional vector space of
the group algebra F2[F n

2 × F n
2 ]. The dimension is called the Γ-rank of the function F . Similarly,

the dimension of the ideal generated by DF in F2[F n
2 × F n

2 ] is called the ∆-rank of F .
The Walsh transform of a function F is nothing else than the Discrete Fourier transform

of GF , which we describe briefly: If G is a finite abelian group, then there are |G| different
homomorphisms χ : G → C, and the set of these homomorphisms (called characters) form a
group under multiplication χ1χ2(g) := χ1(g) · χ2(g). This group is isomorphic to G. Characters
χ may be extended to homomorphisms χ : C[G]→ C[G] by linearity:

χ(
∑
g∈G

ag g) :=
∑
g∈G

agχ(g).

Let χ be a character of G, and Ψ an automorphism of G. Then the mapping χΨ : G → C
with χΨ(g) := χ(Ψ(g)) is again a character. Moreover, Ψ may be extended to a group algebra
automorphism. This shows that the Walsh spectrum of an element D ∈ C[G] is invariant under
the application of group automorphisms.

If G = F n
2 × F n

2 , the characters are the mappings χα,β defined by χα,β(u, v) := (−1)tr(αu+βv),
where we identify (as usual) the vector space F n

2 with the additive group of the finite field F2n .
Therefore, the Walsh spectrum is just the multiset of character values of GF .

Definition 1 (CCZ and EA equivalence, [14]). Two functions F,H : F n
2 → F n

2 are called CCZ
equivalent if there is an automorphism Ψ of the group F n

2 × F n
2 (which is the additive group of

the vector space F 2n
2 , hence Ψ is simply a bijective linear mapping on this vector space) and an

element (u, v) ∈ F n
2 × F n

2 such that

Ψ(GF ) = GH · (u, v),

hence Ψ(GF ) is a translate of GH . If Ψ fixes the subgroup {(0, y) : y ∈ F n
2 } setwise, we say

that the functions are EA equivalent (EA = extended affine). If, additionally, Ψ fixes the set
{(x, 0) : x ∈ F n

2 }, then F and G are called affine equivalent.
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This relation is called CCZ equivalent because it has been introduced (using different notation)
by Carlet, Charpin and Zinoviev [19].

Proposition 1. If F is an APN (resp. AB) function, and if H is CCZ equivalent to F , then H
is also an APN (resp. AB) function.

Proof. Let GH = Ψ(GF ) · (u, v). If χ is a character of F n
2 × F n

2 , then χ(GH) = χΨ(GF ) · χ(u, v),
hence the maximum absolute character value is invariant under CCZ equivalence, hence H is AB
if F is AB. If F is APN, then

GF ·GF = n · (0, 0) + 2 ·DF

and therefore
GH ·GH = n · (0, 0) + 2 ·Ψ(DF ) in C[F n

2 × F n
2 ].

This proposition and its proof have some consequences: The Walsh spectrum is not invariant
under CCZ equivalence: The Walsh coefficients χ(GF ) and χ(GF ) · χ(u, v) differ by the factor
χ(u, v), hence by ±1. The problem arises from the addition of the element (u, v): The Walsh
spectrum is invariant under affine equivalence, but not under EA or CCZ equivalence. The set
containing the Walsh spectrum and its negative is called the extended Walsh spectrum, and
this is invariant under CCZ equivalence. Sometimes we just speak about the Walsh spectrum, for
instance when discussing the tables at the end of this paper. In these cases, we list just one of the
two possible Walsh spectra.

There is one drawback in the concept of CCZ equivalence: If F is APN (or AB), the group
algebra element Ψ(GF ) does not necessarily correspond to a function H, see [14], for instance.

The question about the inequivalence of the power APN functions in Table 1 has been discussed
in [12].

It is obvious that the ∆- and Γ-ranks are invariant under CCZ equivalence.
Now we discuss the first part of the problem at the end of Section 1: Is the list in Table

1 complete? This has been answered negatively in [27]. One of the examples in [27] has been
generalized to an infinite family, and a lot more constructions have been found since. In particular,
Dillon [22] presented a list of 12 examples in F 6

2 . This list appears in [9], together with many new
examples in the cases F 7

2 and F 8
2 .

However, all the new examples that have been constructed so far are “quadratic” in the sense
that the derivatives F (x+ a)−F (x) are affine mappings. Since the property of being “quadratic”
is not invariant under CCZ equivalence (see [14]), we modify the definition as follows:

Definition 2. A function F : F n
2 → F n

2 is CCZ quadratic if F is CCZ equivalent to a function
H with the property that H(x+ a)−H(x) is affine for all a ∈ F n

2 .

How can we prove that a function is not CCZ quadratic? For this purpose, we look at the
following design or incidence structure associated with an APN function. We refer the reader to
the comprehensive book [2] for background from design theory and difference sets: The designs we
are going to define here may be viewed as the designs developed from a certain type of difference
set.

Definition 3 ([30]). Let F : F n
2 → F n

2 be an APN function. Then we define two incidence
structures (designs) on the point set F n

2 × F n
2 : The first design has blocks

GF · (a, b) := {(x+ a, F (x) + b) : x ∈ F n
2 }

for a, b ∈ F n
2 , i.e. the translates of GF . We call this design the development of GF , denoted by

dev(GF ). Similarly, the design whose blocks are the translates

DF · (a, b)
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of DF (see Lemma 1) is the development of DF , denoted by dev(DF ). We call two designs
isomorphic if there is a permutation π on the set of points such that blocks (which in this case
are subsets B = {g1, . . .} of the point set) are mapped to blocks (i.e. π(B) = {π(g1), . . .} is a
block).

Any incidence structure gives rise to an incidence matrix: Rows and columns are indexed by
the points and blocks, resp., and the (p,B)-entry is 1 if point p is incident with block B; all other
entries are 0. The Γ-rank defined earlier is nothing else than the rank of the incidence matrix
of dev(GF ), considered as a matrix with entries in F2; similarly, the ∆-rank is the F2-rank of an
incidence matrix of dev(DF ).

Lemma 2. If F and H are CCZ equivalent APN functions, the designs dev(GF ) and dev(GH)
are isomorphic. Moreover, the designs dev(DF ) and dev(DH) are isomorphic.

Proof. Straightforward, see also [30]: The group automorphism Ψ with Ψ(GF ) = GH · (u, v) is the
permutation on the point set which maps blocks to blocks.

Using MAGMA [4] it is quite easy to determine the automorphism groups of these designs for
small values of n. There is another group associated with the designs dev(GF ) (resp. dev(DF )):
The sets GF (resp. DF ) are subsets of F 2n

2 . Then there may exist automorphisms ϕ of F 2n
2 such

that ϕ(GF ) = GF · (u, v) (resp. ϕ(DF ) = DF · (u, v)) for some u, v ∈ F n
2 . These automorphisms

form a group contained in the automorphism group of the designs dev(GF ) (resp. dev(DF )). Using
notation adopted from the theory of difference sets, we call the group of these automorphisms the
multiplier group M(GF ) (resp. M(DF )) of dev(GF ) (resp. dev(DF )). It turns out that
M(GF ) is much easier to compute with MAGMA than the full automorphism group of the design
dev(GF ).

We denote the group of translations τa,b : F n
2 ×F n

2 → F n
2 ×F n

2 with τa,b(x, y) := (x+a, y+ b)
by T . Obviously, we have |T | = 22n, and |M(GF ) ∩ T | = 1 as well as |M(DF ) ∩ T | = 1.

Since the multiplier group normalizes T , we have the following lemma:

Lemma 3. Let F : F n
2 → F n

2 be an APN function. Then

1. 〈M(GF ), T 〉 ⊆ Aut(dev(GF )).

2. 〈M(DF ), T 〉 ⊆ Aut(dev(DF )).

3. |M(GF )| · 22n = |〈M(GF ), T 〉|.

4. |M(DF )| · 22n = |〈M(DF ), T 〉|.

5. M(GF ) ⊆M(DF ).

It is possible to show that M(GF ) is just the automorphism group of the extended code Cext
F

defined in the introduction, see [9]. In all cases known to us, the “full” automorphism group of
the design dev(GF ) is just the multiplier group “times” the translations τa,b.

We do not know whether this observation that holds for small values is true in general:

Problem 2. Is it possible that the full automorphism group of dev(GF ) (resp. dev(DF )) is larger
than |M(GF )| · 22n (resp. |M(DF )| · 22n)?

It seems that the automorphism group is a good invariant for CCZ equivalence, in particular
to distinguish the quadratic from the non-quadratic case:

Theorem 4. If F : F n
2 → F n

2 is an APN mapping such that F (x + a) − F (x) is affine for all
a ∈ F n

2 , then the multiplier group M(GF ) contains an elementary abelian group of order 2n.
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Proof. If F is quadratic, then we may assume (after replacing F by a CCZ equivalent function, if
necessary) that the mappings La(x) := F (x+ a) + F (x) + F (a) + F (0) are linear. We compute

(La + Lb)(x) = F (x) + F (x+ a) + F (a) + F (0) + F (x) + F (x+ b) + F (b) + F (0)

= F (x+ a) + F (x+ b) + F (a) + F (b).

Now we use
La(b+ x) = F (a+ b+ x) + F (b+ x) + F (a) + F (0)

and
La(b+ x) = La(b) + La(x) = F (b) + F (a+ b) + F (x) + F (a+ x)

to obtain

F (a+ b+ x) = F (b+ x) + F (a) + F (0) + F (b) + F (a+ b) + F (x) + F (a+ x). (5)

We get

La+b(x) = F (a+ b+ x) + F (a+ b) + F (x) + F (0)

= F (b+ x) + F (a) + F (b) + F (a+ x) using (5)

= La(x) + Lb(x).

This shows that the mappings ψa defined by ψa(x, y) = (x, y + La(x)) are linear, and

ψa(GF ) = {(x, F (x) + La(x)) : x ∈ F n
2 }

= {(x, F (x+ a) + F (a) + F (0)) : x ∈ F n
2 }

= {(x− a, F (x) + F (a) + F (0)) : x ∈ F n
2 }

= GF · (−a, F (a) + F (0))

is a translate of GF , hence the mappings ψa are automorphisms of dev(GF ). Moreover, ψa+b =
ψb ◦ ψa so that the ψa’s form a group of order 2n.

With Lemma 3, we get the following

Corollary 5. Under the assumptions of Theorem 4, Aut(dev(GF )) and Aut(dev(DF )) both contain
an elementary abelian group of order 23n.

Corollary 6 (Göloğlu, Pott [30]). The Kasami power functions x13 and x57 on F27 are not CCZ
quadratic, hence they are not CCZ equivalent to quadratic functions.

Proof. Using MAGMA, it is easy to compute |Aut(dev(GF ))| for F (x) = x13 and F (x) = x57:
The order of the groups is, in both cases, 214 ·7 ·(27−1) (Table 6) which is not divisible by 221.

Most people conjecture that the examples in Table 1 are all CCZ inequivalent, except for small
n where some of the cases coincide, but as far as we know there is no proof yet. It is known that
the Gold power mappings are CCZ inequivalent to the Kasami power mappings, and different
Gold exponents are CCZ inequivalent, see [12].

There is another concept related to quadratic APN functions: If F is quadratic, then F (x +
a)− F (x) is affine and

Ha := {b : F (x+ a)− F (x) = b for some x ∈ F n
2 } (6)

is an affine subspace. If a 6= 0, this subspace has 2n−1 elements (since F is APN), hence its is an
(affine) hyperplane. We say that a function is crooked if the sets in (6) are (affine) hyperplanes
for all a 6= 0. This concept is due to Bending and Fon-der-Flaas [1]. “Crooked” is not invariant
under CCZ equivalence, hence it would be better to say that a function F is crooked if it is CCZ
equivalent to a function for which all the sets Ha are hyperplanes:
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Definition 4. An APN function F : F n
2 → F n

2 is called CCZ crooked if F is CCZ equivalent
to a function G such that the sets

{b : G(x+ a)−G(x) = b for some x ∈ F n
2 }

are affine hyperplanes in F n
2 .

It is obvious that any (CCZ) quadratic function is (CCZ) crooked, and it is conjectured that
the converse is also true, see [3, 33] for partial results in this direction. However, as long as we
do not know whether non-quadratic crooked functions exist, we need to find arguments that a
function is not CCZ crooked. The following argument gives an interesting necessary condition for
a function to be crooked:

Theorem 7. Let F : F n
2 → F n

2 be an APN mapping. If F is CCZ crooked, then the dimension
of the ideal generated by DF ∈ F2[F n

2 × F n
2 ] is at most 2n+1, hence the ∆-rank is at most 2n+1

(see Lemma 1 for the definition of DF ).

Proof. If F is crooked, there are 2n − 1 (affine) hyperplanes Ha such that

DF = {(a, x) : a ∈ F n
2 \ {0}, x ∈ Ha}

(replace F by a CCZ equivalent function if necessary). We define

Ja := {(a, x) : x ∈ F n
2 }.

As explained above, these subsets may be also interpreted as elements in F2[F n
2 × F n

2 ]. We will
show that the ideal generated by DF is contained in the subspace I generated (as a vector space)
by the 2n+1 elements

{DF · (u, 0) : u ∈ F n
2 } ∪ {Ja : a ∈ F n

2 }

in the group algebra F2[F n
2 × F n

2 ]. It is sufficient to show that DF · (u, v) ∈ I for all (u, v) ∈
F n

2 × F n
2 . The set corresponding to DF · (u, v) is {(a + u,Ha + v) : a ∈ F n

2 \ {0}}, where
Ha + v = {h + v : h ∈ Ha}. Here we used the notation (x, T ) to denote the set of elements
{(x, t) : t ∈ T}. Since Ha is a hyperplane, we have Ha + y = Ha or Ha + y is the complement of
Ha: In group algebra notation, this means for fixed a ∈ F n

2 \ {0}

(a+ u,Ha + v) = (a+ u,Ha) or (a+ u,Ha + v) = (a+ u,Ha) + Ja+u

in F2[F n
2 × F n

2 ]. In the equation above, we again identify subsets with the corresponding group
algebra elements. Adding the element Ja+u has the effect of complementing Ha in (a+u,Ha).

Corollary 8. The Kasami power mappings x13 and x57 on F27 are not CCZ crooked.

Proof. It is easy to compute the ∆-ranks of x13 (resp. x57) using MAGMA: The ranks are 338
(resp. 436), see Table 6.

It would be very interesting to determine the ∆- and Γ-ranks of APN functions theoretically.
In the next section (Theorem 11), we will construct a new APN function which, at first glance,

seems to be non-quadratic. In order to prove that the function is indeed non-quadratic, we use
Theorem 7 to show that the function cannot be CCZ equivalent to a crooked function, hence it
cannot be quadratic. We could also use Theorem 4 to show that the function is non-quadratic,
since the automorphism group of dev(GF ) is too small for the new function F . We have checked
that our function is equivalent to the new example given in [7]. However, in that paper the authors
erroneously claimed that their new function is CCZ equivalent to a quadratic one. Moreover, our
function was found independently by the search in [7].

9



3 Dillon’s switching construction

The following interesting construction of an APN function is contained in [11]:

Proposition 2. The function x3 + tr(x9) is APN in F2n for all n.

This is a special case of what we call “switching”. For this purpose, we consider certain
projection homomorphisms on the group algebra F[G]. Let U be a subgroup of G. Then the
canonical homomorphism ϕU : G→ G/U defined by ϕU (g) := g+U can be extended by linearity
to a homomorphism ϕU : F[G]→ F[G/U ]. Let D =

∑
agg be an element in F[G]. The coefficient

of g + U in ϕ(D) is
∑
h∈g+U ah (this summation is in F). If D has only coefficients 0 and 1 (so

that D corresponds to a set D ⊆ G) then the coefficient of g + U is |D ∩ (g + U)|. In particular,
if each coset of U meets D in at most one element, then ϕU (D) has also only coefficients 0 and 1.
This is the case if U ≤ {0} × F n

2 (recall that “≤” denotes “being subgroup”).

Definition 5 (switching neighbours). Let F,H : F n
2 → F n

2 be two functions, and let U ≤ F n
2 ×F n

2

be a subgroup of F n
2 × F n

2 . We say that F and H switching neighbours with respect to U
if ϕU (GF ) = ϕU (GH). We call F and H switching neighbours in the narrow sense if
U ≤ {0} × F n

2 and dim(U) = 1.

If F and H are switching neighbours with respect to U , we may obtain H from F by first
projecting GF onto ϕU (GF ), and then lifting this element to GH . We may also try to construct
new switching neighbours H of F via such a project and lift procedure such that (hopefully) F
and H are CCZ inequivalent. This is promising in particular if the dimension of U is small. The
intuitive idea behind this approach is that ϕU (GF ) is almost an APN function, and so it may be
easy to turn this “almost” APN into an APN function.

We describe this approach (and applications) for the case F : F n
2 → F n

2 and U ≤ {0} × F n
2 .

This has the advantage that the coefficients of ϕU (GF ) are 0 and 1 only, since the cosets of
{0} × F n

2 (and therefore also the cosets of U) meet GF no more than once. In this case, ϕU (GF )
corresponds to a mapping FU : F n

2 → F n
2 /U

′ with FU (v) := v + U ′ and

U ′ = {u : (0, u) ∈ U} (7)

(hence U ′ is basically the same as U).

Proposition 3. Let F,H : F n
2 → F n

2 , and let U ≤ {0} × F n
2 . Then

FU = HU if and only if (0, F (v)−H(v)) ∈ U for all v ∈ F n
2 .

If U = {(0, 0), (0, u)}, then FU = HU if and only if there is a Boolean function f : F n
2 → F2 such

that H(v) = F (v) + f(v) · u.

Proof. We define U ′ as in (7). Then FU (v) = HU (v) if and only if F (v) + U ′ = H(v) + U ′, hence
FU (v)−HU (v) ∈ U ′ for all v. This shows the first part of the proposition.

The function f is defined via

f(v) :=

{
0 if F (v) = H(v)
1 if F (v) 6= H(v)

which concludes the proof.

The two functions F (x) = x3 and H(x) = x3 + tr(x9) are switching neighbours in the narrow
sense: Take the 1-dimensional subspace U generated by (0, 1) ∈ F n

2 × F n
2 . Then ϕU (GF ) =

ϕU (GH).
Proposition 3 shows that we may obtain all switching neighbours of F in the narrow sense (with

respect to a one-dimensional subspace) by adding a Boolean function f times a vector u 6= 0. Let
F be an APN function. The following Theorem gives a necessary and sufficient condition for f to
produce another (not necessarily equivalent) APN function:
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Theorem 9. Assume that F : F n
2 → F n

2 is an APN function. Let u ∈ F n
2 , u 6= 0, and let

f : F n
2 → F2 be a Boolean function. Then F (v) + f(v) · u is an APN function if and only if

f(x) + f(x+ a) + f(y) + f(y + a) = 0

for all x, y, a ∈ F n
2 with

F (x) + F (x+ a) + F (y) + F (y + a) = u. (8)

Proof. Since F is APN, the equation

F (x+ a) + F (x) + (f(x+ a) + f(x))u = b

hat at most 4 solutions for x, namely those x for which F (x+ a) + F (x) ∈ {b, b+ u}. If there are
4 different solutions x, y, x+ a, y + a (hence if F is not APN) then

F (x+ a) + F (x) + (f(x+ a) + f(x))u = b

F (y + a) + F (y) + (f(y + a) + f(y))u = b.

But this is possible if and only if (8) and

f(x) + f(x+ a) + f(y) + f(y + a) = 1

holds. Therefore, F is APN if f(x) + f(x+ a) + f(y) + f(y + a) = 0.

Remark 1. 1. The Boolean function f depends on u, i.e. for different choices of u we may
get different f ’s.

2. It seems to be difficult to find a theoretical criterion for the function F (v)+f(v)u to be CCZ
equivalent to F (v).

3. The functions F (v) and F (v) + f(v)u are switching neighbours in the narrow sense with
respect to {(0, 0), (0, u)}.

Theorem 9 immediately suggests a strategy to find Boolean functions f such that F (v)+f(v)u
is APN: Determine all 4-tuples x, y, x + y, y + a such that (8) holds. These 4-tuples give rise to
constraints

f(x) + f(x+ a) + f(y) + f(y + a) = 0.

We may view f as a vector of length 2n (coordinates are indexed by elements v in F n
2 , and the

entries of the vector are f(v)). Thus the constraints are linear conditions, and we may find f ’s by
solving a system of linear equations.

Here is another interpretation:
The function F is uniquely determined by its function values. Consider the n-dimensional

subspace W of F 2n

2 spanned by the rows of (F (x) : x ∈ F n
2 ). Write F n

2 as a direct sum uF2 ⊕ U .
This “lifts” to a decomposition of W = V ⊕V : We simply decompose every F (x) ∈ F n

2 according
to a decomposition F n

2 = 〈u〉 ⊕ U , where U is any complement of 〈u〉.
Let x, y, x+a, y+a be a 4-tuple which satisfies the condition of Theorem 9. The corresponding

indicator function (which is 1 for x, y, x+ a, y + a and 0 otherwise) is a vector of weight 4 in V
⊥

.
This function is not in W⊥ since F is APN. Let Ṽ be the vector space generated by these vectors
of weight 4. Note that F (x) + f(x) · u is APN if and only if f ∈ Ṽ ⊥ 1 (Theorem 9). Let R
be the vector space of dimension n+ 1 generated by the all-one-vector (1, . . . , 1) and the rows of
(x : x ∈ F n

2 ). Then we have V ⊕ R ⊆ Ṽ ⊥. If f, g ∈ Ṽ ⊥ are in the same coset of V ⊕ R, then
F (x) + f(x)u and F (x) + g(x)u are EA equivalent: The difference (f(x) − g(x) : x ∈ F n

2 ) is an
element of V ⊕R ⊆W ⊕R, hence f(x)− g(x) = A(F (x)) +B(x) or A(F (x)) +B(x) + 1 for some
linear mappings A,B : F n

2 7→ F2.
In particular: If Ṽ ⊥ has dimension 2n, then there is no candidate for a “switching function”

f(x)u.

1the ⊥ is missing in the printed article
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Definition 6. The finest equivalence relation on the set of APN functions such that all switching
neighbours in the narrow sense and all EA-equivalent functions are equivalent, is called the EA
switching equivalence relation. In the same way, we define CCZ switching equivalence.

This “switching idea” is closely related to a comment of John F. Dillon about the construction
in [11]. Actually our proof of Theorem 9 is just a slight variation of Dillon’s observation: Using
the notation of Proposition 3, he considered the case u = 1. Therefore we decided to call this
method Dillon’s switching construction since he was the first who discussed it.

In the next section, we determine the CCZ switching equivalence classes of all known CCZ
inequivalent APN functions on F n

2 , n ≤ 7, and all EA switching equivalence classes of all known
CCZ inequivalent APN functions if n = 8 and n = 9. Several of the new constructions in the
literature are switching equivalent. It seems that the switching idea is quite powerful to construct
new APN functions, since many of the new APN functions listed by Dillon in [9] are within just
one switching class. In the case n = 8, the EA switching class of the Gold function x3 contains 17
CCZ inequivalent functions!

4 Computational results and open problems

There is, up to equivalence, just one APN mapping F n
2 → F n

2 for n ≤ 4, hence no interesting
things happen in these cases. In the case n = 5, a complete classification of APN functions (up
to CCZ equivalence) is contained in [6]. We summarize our computational results in the following
tables. We also include some interesting CCZ invariants:

• ∆- and Γ-Rank.

• Orders of automorphism groups of dev(DF ), dev(GF ) and M(GF ).

• Walsh spectrum (see the comments following Proposition 1 about the CCZ invariance of the
Walsh spectrum).

If all these invariants are the same, we use a direct test to check that the examples are CCZ
inequivalent, hence the reader can be sure that all the examples in the following tables are CCZ
inequivalent. However, we do not claim that our tables are complete in the sense that they contain
all possible CCZ equivalence classes of APN functions with n = 6, 7, 8 and 9.

We list the Walsh spectrum only if it is different from the Walsh spectrum of x3. The Walsh
spectrum of x3 is called classical.

We number the examples as 1.1, 1.2, ..., 2.1, 2.2, ... etc. The first number describes the EA
(CCZ) switching class, and the second number the CCZ inequivalent examples within this class.
Our search was complete in the sense that, starting from the known APN functions, we searched
through the entire EA (CCZ) switching class. Hence any new APN function must be a member
of a new switching class. We used the examples in [22] and [9] as the starting cases.

In the case n ≤ 7, we searched through the entire CCZ switching class, in the case n = 8, 9
through the EA switching class only.

Each switching class (no matter whether it is the EA switching or the CCZ switching class) may
contain several CCZ inequivalent functions. In our tables, we list all CCZ inequivalent examples
within one switching class.

Some comments about the sizes of the automorphism groups are in order: The automorphism
groups contain the 22n translations τa,b, see Theorem 4, therefore we divided the group sizes in our
tables by 22n. We were not able to determine the sizes of these groups if n ≥ 8. However, it was
possible to determine the multiplier groupM(GF ) of dev(GF ): Using MAGMA, we determined the
automorphism groups of the associated extended codes Cext

F . In the cases n ≤ 7, the automorphism
groups of dev(GF ) have been always the groups generated by the multipliers plus the translations;
therefore, it may be possible that the group sizes in Table 10 describe actually the sizes of the full
automorphism groups. We did not determine the multiplier groups M(DF ).

It is quite interesting to look at the automorphism groups of the designs dev(GF ) because they
give some information about F :
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Theorem 10. Let F (x) be an APN function on F2n . Let v = |M(GF )|. Then the following holds:

(1.) If F (x) is CCZ quadratic, then 2n divides v.

(2.) If F is CCZ equivalent to a power mapping, then n · (2n − 1) divides v.

(3.) If F is CCZ equivalent to a polynomial in F2[x], then n divides v.

Proof. The first statement is simply Theorem 4. If F (x) ∈ F2[x], then the linear mapping F2n ×
F2n → F2n × F2n defined by (x, y) 7→ (x2, y2) has order n, and it fixes the set GF . This shows
(3). If F (x) = γ · xd, then the 2n − 1 mappings defined by (x, y) 7→ (αx, αd · y), α ∈ F2n , fix the
set GF . Moreover, we may assume that γ = 1, otherwise we replace F by the CCZ equivalent
function 1

γF , which shows (2).

We did mention already that quadratic functions are crooked. The following question is of
interest:

Problem 3. Are all crooked functions quadratic?

A function defined by
∑
i,j αi,jx

2i+2j

is quadratic. Therefore, Theorems 10 and 7 show the
following:

Remark 2. The only non-quadratic functions in Tables 3, 5 and 7 are the function no. 2.1 in
Table 3, the function no. 2.12 in Table 5, the functions no. 5.1, 6.1 and 7.1 in Table 7 and the
functions no. 4.1, 5.1, 6.1 and 7.1 in Table 11. Moreover, none of these functions is crooked.

Our new function 14.3 in Table 7 is inequivalent to all polynomials with coefficients in F2

(Theorem 10).
We note that Table 3 contains, up to CCZ-equivalence, all APN functions on F 5

2 . In Tables 5
and 7, we determined the CCZ switching classes, starting from the known CCZ inequivalent APN
functions. In Tables 9 and 11, we did not apply the switching construction to all the members
of the CCZ equivalence classes. In other words, we started with the functions listed in the tables
below and determined the EA switching classes, not the CCZ switching classes.

In Table 5, the Example 2.12 is new (see Theorem 11), and in Table 7, the Example 14.3 is
new.

In our opinion, the most interesting function is the following non-quadratic example, see also
[7]:

Theorem 11. Let F26 be the finite field which is constructed as the splitting field of x6 + x4 +
x3 + x + 1 ∈ F2[x]. Let u be a root of this polynomial in F26 . Then the function F : F26 → F26

with
F (x) = x3 + u17(x17 + x18 + x20 + x24) +

u14(tr(u52x3 + u6x5 + u19x7 + u28x11 + u2x13) +
tr8/2((u2x)9) + tr4/2(x21))

(9)

(entry 2.11 in Table 5) is an APN function which is a switching neighbour of Function 2.4 in
Table 5. Here tr8/2 and tr4/2 denote the relative trace F8 → F2 and F4 → F2. The function cannot
be CCZ equivalent to a crooked function. Moreover, it is CCZ inequivalent to a power mapping.

Proof. It is quite easy to check that the function is APN and that it is a switching neighbour of
x3 + u17(x17 + x18 + x20 + x24). Note that the ∆-rank 152 > 27 of this function is too big for a
crooked function, see Theorem 7. Similarly, the function is inequivalent to a power mapping since
the order of the multiplier group is not divisible by 26 − 1, see Theorem 10.

Two APN functions which are switching equivalent in the narrow sense are quite “similar”,
they are “almost” equal (see Proposition 3). Therefore, the following question seems natural:

Problem 4. Is there a property which distinguishes switching equivalent functions from those
which are not switching equivalent?
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n p(x)

5 x5 + x2 + 1

6 x6 + x4 + x3 + x+ 1

7 x7 + x+ 1

8 x8 + x4 + x3 + x2 + 1

9 x9 + x4 + 1

Table 2: Used primitive polynomials p(x)

Our computational results are quite pessimistic regarding this question. It seems that there
is no property of an APN function which is preserved under switching. Also the sizes of the
equivalence classes seem to behave “strange”: In the n = 8 case, there is one large switching class,
but in the case n = 7 there are only small classes.

It seems that many inequivalent APN functions exist. So, in our opinion, the main question
about APN functions is to determine at least a lower bound for the number of inequivalent ones.
Let APN(n) denote the number of CCZ inequivalent APN functions F n

2 → F n
2 . We ask:

Problem 5. Does the function APN(n) grow exponentially?

This paper contains a new non-quadratic APN function. We think that it is worth to search
for more examples:

Problem 6. Find more non-quadratic APN functions.

We described the switching construction in quite a general form, and then specialized to the
case of 1-dimensional subspaces U ≤ {0}×F n

2 . In this case, it was (rather) easy to find switching
neighbours. But of course it is also possible to use higher-dimensional subspaces, or even subspaces
not contained in {0} × F n

2 . These cases are more difficult to handle, but we do not think it is
impossible. If U becomes larger, the projections are further away from being APN, therefore
the “lifting” will become more difficult. On the other hand, if we are using higher-dimensional
subspaces U , we obtain more freedom for the lifting. But if U is too big, the approach will most
likely become useless: If, in the extreme case, U = {0} × F n

2 , then all APN functions F project
onto the same set ϕU (GF ).

A generalization of the switching idea to functions between fields of odd characteristic is obvi-
ous. Therefore, this approach could also be applied to PN functions:

Problem 7. Try to use the switching idea for other subspaces U or for PN functions.

Finally, we come back to the original motivation for studying APN functions: APN’s are used
in cryptography because they are highly nonlinear. Moreover, functions used in cryptography
should quite often have large algebraic degree. Therefore, quadratic functions are usually “weak”
regarding applications. But our paper shows that functions of large degree can be quite similar to
quadratic (i.e. weak) functions via our projection idea. Therefore, it may be worth to see whether
“switching” can be used for cryptanalysis.

In the following tables, it is important to know the primitive element that was used to construct
the finite fields. In Table 2, we list these polynomials p(x). The primitive element u used later in
the tables is a root of p(x) in F2[x]/(p(x)), see [35] for more information about finite field extensions.
In the following tables, the notation (No x.y) + f(x) means that you take the function which is
listed in No x.y and add f(x) to it. This notation has the advantage that you see immediately
why the functions are switching equivalent. In some cases, we gave a second representative from
the respective CCZ class (denoted by ∼), which is the representative from [9].
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n = 5

No. F (x)

1.1 x3

1.2 x5 (No. 1.1) + u29tr(x3 + u24x5)

2.1 x−1

Table 3: All switching classes of APN’s in F 5
2

n = 5

No. Γ-rank ∆-rank
|Aut(dev(GF ))|

210

|Aut(dev(DF ))|
210

Walsh spectrum

1.1 330 42 25 · 5 · 31 25 · 5 · 31 classical

1.2 330 42 25 · 5 · 31 210 · 5 · 31 classical

2.1 496 232 2 · 5 · 31 2 · 5 · 31

{* 32[1], 12[21],
8[195], 4[260],
0[217], -4[205],
-8[115], -12[10]*}

Table 4: Invariants of switching classes in Table 3

n = 6

No. No. in [9] F (x)

1.1 1 x3

1.2 2 (No. 1.1) + u(tr(u56x3) + tr8/2(u18x9) (∼ x3 + u11x6 + ux9)

2.1 5 x3 + ux24 + x10

2.2 6 (No. 2.1) + u3(tr(u10x3 + u53x5) + tr8/2(u36x9))

2.3 9 (No. 2.1) + tr(u34x3 + u48x5) + tr8/2(u9x9)

2.4 12 (No. 2.1) + u2(tr(u24x3 + u28x5) + tr8/2(x9))

2.5 3 (No. 2.3) + u42(tr(u10x3 + u51x5) + tr8/2(u9x9))

2.6 7 (No. 2.3) + u23(tr(u31x3 + u49x5) + tr8/2(u9x9))

2.7 8 (No. 2.3) + u12(tr(u42x3 + u13x5) + tr8/2(u54x9))

2.8 10 (No. 2.3) + u(tr(u51x3 + u60x5) + tr8/2(u18x9))

2.9 11 (No. 2.3) + u14(tr(u18x3 + u61x5) + tr8/2(u18x9))

2.10 13 (No. 2.3) + u17(tr(u50x3 + u56x5))

2.11 new (Theorem 11) (No. 2.3)+u19(tr(u11x3+u7x5+u38x7+u61x11+u23x13)+
tr8/2(u54x9) + tr4/2(u42x21))

2.12 4 (No. 2.4) + u(tr(u54x3 + u47x5) + tr8/2(u9x9))

Table 5: Known switching classes of APN’s in F 6
2

15



n = 6

No. Γ-rank ∆-rank
|Aut(dev(GF ))|

212

|Aut(dev(DF ))|
212

Walsh spectrum

1.1 1102 94 27 · 33 · 7 28 · 33 · 7 classical

1.2 1146 94 26 · 32 · 7 27 · 32 · 7 classical

2.1 1166 96 27 · 7 27 · 7 classical

2.2 1168 96 26 26 classical

2.3 1170 96 26 26 classical

2.4 1172 96 26 26 classical

2.5 1158 96 26 · 5 26 · 5 classical

2.6 1170 96 26 · 5 26 · 5
{* 64[1], 32[3],
16[160], 8[1656],

0[891], -8[1288],
-16[96], -32[1] *}

2.7 1170 96 26 26 classical

2.8 1170 96 26 26 classical

2.9 1172 96 26 26 classical

2.10 1174 96 26 26 classical

2.11 1300 152 23 23 classical

2.12 1166 94 26 · 7 27 · 7 classical

Table 6: Known switching classes of APN’s in F 6
2 : Invariants
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n = 7

No. No. in [9] F (x)

1.1 1 x3

1.2 7 x3 + tr(x9)

2.1 8 x34 + x18 + x5

2.2 11 (No. 2.1) + tr(x3 + u103x5 + u5x9)
(∼ x3 + x17 + x33 + x34)

3.1 3 x5

4.1 2 x9

5.1 4 x13

6.1 5 x57

7.1 6 x−1

8.1 9 x65 + x10 + x3

9.1 13 x3 + x9 + x18 + x66

10.1 14 x3 + x12 + x17 + x33

10.2 10 (No. 10.1) + tr(u41x3 + u17x5 + u34x9)
(∼ x3 + x17 + x20 + x34 + x66)

11.1 15 x3 + x20 + x34 + x66

12.1 16 x3 + x12 + x40 + x72

13.1 12 x3 + x5 + x10 + x33 + x34

14.1 17 x3 + x6 + x34 + x40 + x72

14.2 18 (No. 14.1) + tr(u105x3 + u84x5 + u123x9)
(∼ x3 + x5 + x6 + x12 + x33 + x34)

14.3 new (No. 14.1) + u27(tr(u20x3 + u94x5 + u66x9))

Table 7: Known switching classes of APN’s in F 7
2
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n = 7

No. Γ-rank ∆-rank
|Aut(dev(GF ))|

214

|Aut(dev(DF ))|
214

Walsh spectrum

1.1 3610 198 27 · 7 · 127 27 · 7 · 127 classical

1.2 4026 212 27 · 7 27 · 7 classical

2.1 4034 210 27 · 7 27 · 7 classical

2.2 4040 212 27 · 7 27 · 7 classical

3.1 3708 198 27 · 7 · 127 27 · 7 · 127 classical

4.1 3610 198 27 · 7 · 127 214 · 7 · 127 classical

5.1 4270 338 7 · 127 7 · 127 classical

6.1 4704 436 7 · 127 7 · 127 classical

7.1 8128 4928 2 · 7 · 127 2 · 7 · 127

{* 128[1], 20[1029],
16[1498], 12[1526],

8[1897], 4[1827], 0[2032],
-4[1729], -8[1659],

-12[1268], -16[1169],
-20[749] *}

8.1 4038 212 27 · 7 27 · 7 classical

9.1 4044 212 27 · 7 27 · 7 classical

10.1 4048 210 27 · 7 27 · 7 classical

10.2 4040 210 27 · 7 27 · 7 classical

11.1 4048 210 27 · 7 27 · 7 classical

12.1 4048 210 27 · 7 27 · 7 classical

13.1 4040 212 27 · 7 27 · 7 classical

14.1 4048 212 27 · 7 27 · 7 classical

14.2 4050 210 27 · 7 27 · 7 classical

14.3 4046 212 27 27 classical

Table 8: Known switching classes of APN’s in F 7
2 : Invariants
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n = 8

No. No. in [9] F(x)

1.1 1 x3

1.2 5 (No. 1.1) + tr(u48x3 + x9) (∼ x3 + trx9)

1.3 7 (No. 1.1) + u(tr(u63x3 + u252x9))
(∼ x3 + u245x33 + u183x66 + u21x144)

1.4 new (No. 1.2) + u38(tr(u84x3 + u213x9))

1.5 new (No. 1.2) + u51(tr(u253x3 + u102x9))

1.6 new (No. 1.3) + u154(tr(u68x3 + u235x9))

1.7 new (No. 1.4) + u69(tr(u147x3 + u20x9))

1.8 new (No. 1.5) + u68(tr(u153x3 + u51x9))

1.9 new (No. 1.6) + u35(tr(u216x3 + u116x9))

1.10 new (No. 1.7) + u22(tr(u232x3 + u195x9))

1.11 6 (No. 1.8) + u85(tr(u243x3 + u170x9)) (∼ x9 + tr(x3))

1.12 8 (No. 1.9) + u103(tr(u172x3 + u31x9))
(∼ x3 + u65x18 + u120x66 + u135x144)

1.13 new (No. 1.10) + u90(tr(u87x3 + u141x5 + u20x9)+
tr16/2(u51x17))

1.14 new (No. 1.11) + u5(tr(u160x3 + u250x9))

1.15 2 (No. 1.11) + u102(tr(u6x3 + u119x9)) (∼ x9)

1.16 new (No. 1.14) + u64(tr(u133x3 + u30x9))

1.17 new (No. 1.16) + u78(tr(u235x3 + u146x9))

2.1 4 x3 + x17 + u16(x18 + x33) + u15x48

3.1 9 x3 + u24x6 + u182x132 + u67x192

4.1 10 x3 + x6 + x68 + x80 + x132 + x160

5.1 11 x3 + x5 + x18 + x40 + x66

6.1 12 x3 + x12 + x40 + x66 + x130

7.1 3 x57

Table 9: Known switching classes of APN’s in F 8
2
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n = 8

No. Γ-rank ∆-rank |M(GF ))| Walsh spectrum

1.1 11818 420 211 · 255 classical

1.2 13800 432 211 · 3 classical

1.3 13842 436 210 · 3 classical

1.4 14034 438 28 · 3 classical

1.5 14032 438 210 · 3 classical

1.6 14036 438 210 · 3 classical

1.7 14036 438 29 · 3 classical

1.8 14032 438 210 · 3 classical

1.9 14034 438 210 · 3 classical

1.10 14030 438 29 · 3 classical

1.11 13804 434 211 · 3 classical

1.12 13848 438 210 · 3 classical

1.13 14046 454 29 classical

1.14 14036 438 28 · 3 classical

1.15 12370 420 211 · 255 classical

1.16 14032 438 29 · 3 classical

1.17 14028 438 29 · 3 classical

2.1 13200 414 210 · 32 · 5 classical

3.1 14024 438 210 · 3 classical

4.1 14040 454 211 classical

5.1 14044 446 211 classical

6.1 14046 438 211 classical

7.1 15358 960 23 · 255 classical

Table 10: Known switching classes of APN’s in F 8
2 : Invariants
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n = 9

No. F(x)

1.1 x3

1.2 (No. 1.1) + tr(x9)

1.3 (No. 1.2) + u73tr(u426x3 + u292x9)

1.4 (No. 1.2) + u219tr(u303x3 + u365x9)

2.1 x5

3.1 x17

4.1 x13

5.1 x19

6.1 x241

7.1 x−1

8.1 x3 + x10 + u438x136

Table 11: Known switching classes of APN’s in F 9
2

n = 9

No. Γ-rank ∆-rank |M(GF ))| Walsh spectrum

1.1 38470 872 9 · 29 · 511 classical

1.2 47890 920 9 · 29 classical

1.3 48428 930 9 · 29 classical

1.4 48460 944 9 · 29 classical

2.1 41494 872 9 · 29 · 511 classical

3.1 38470 872 9 · 29 · 511 classical

4.1 58676 3086 9 · 511 classical

5.1 60894 3956 9 · 511 classical

6.1 61726 3482 9 · 511 classical

7.1 130816 93024 2 · 9 · 511

{* 512[1], 44[3327], 40[7434], 36[7389], 32[12231],
28[16965], 24[8019], 20[11952], 16[18963],
12[11772], 8[16353], 4[16467], 0[10220], -4[16237],
-8[15840], -12[11223], -16[17829], -20[11043],
-24[7311], -28[15228], -32[10764], -36[6408],
-40[6363], -44[2805] *}

8.1 48608 938 3 · 7 · 29 classical

Table 12: Known switching classes of APN’s in F 9
2 : Invariants

21



References

[1] T. D. Bending and D. Fon-Der-Flaass, Crooked functions, bent functions, and distance regular
graphs, Electron. J. Combin., 5 (1998), pp. Research Paper 34, 14 pp. (electronic).

[2] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge,
2 ed., 1999.

[3] J. Bierbrauer and G. M. Kyureghyan, Crooked binomials, Des. Codes Cryptogr., 46 (2008),
pp. 269–301.

[4] W. Bosma, J. Cannon and C. Playoust, The magma algebra system. i. the user language, J.
Symbolic Comput., 24 (1997), pp. 235–265.

[5] C. Bracken, E. Byrne, N. Markin and G. McGuire, Quadratic almost perfect nonlinear func-
tions with many terms. IACR Cryptology ePrint Archive: 2007/115, 2007.

[6] M. Brinkmann and G. Leander, On the classification of APN functions up to dimension five,
in Abstract Book of the Workshop on coding and cryptography, N. S. D. Augo and J.-P.
Tillich, eds., INRIA, 2007, pp. 39–48.

[7] , On the classification of APN functions up to dimension five, Des., Codes, Cryptogr.,
(2008).

[8] A. E. Brouwer and L. M. G. M. Tolhuizen, A sharpening of the Johnson bound for binary linear
codes and the nonexistence of linear codes with Preparata parameters, Des. Codes Cryptogr.,
3 (1993), pp. 95–98.

[9] K. Browning, J. Dillon, R. Kibler and M. McQuistan, APN polynomials and related codes.
submitted, 2008.

[10] L. Budaghyan and C. Carlet, Classes of quadratic APN trinomials and hexanomials and
related structures, IEEE Trans.Inf.Th., 54 (2008), pp. 2354–2357.

[11] , Constructing new APN functions from known ones. to appear in Finite Fields Appl.,
2009.

[12] , On inequivalence between known power APN functions, in International Conference on
Boolean Functions: Cryptography and Applications, 2008.

[13] L. Budaghyan, C. Carlet and G. Leander, Two classes of quadratic APN binomials inequiva-
lent to power functions, IEEE Trans.Inf.Th., 54 (2008), pp. 4218–4229.

[14] L. Budaghyan, C. Carlet and A. Pott, New classes of almost bent and almost perfect nonlinear
polynomials, IEEE Trans. Inform. Theory, 52 (2006), pp. 1141–1152.

[15] L. Budaghyan and T. Helleseth, New perfect nonlinear monomials over Fp2k for any odd
prime p. to be presented at SETA ’08.

[16] E. Byrne, C. Bracken, N. Markin and G. McGuire, New families of quadratic al-
most perfect nonlinear trinomials and multinomials. preprint, available online at:
http://mathsci.ucd.ie/∼gmg/, 2007.

[17] E. Byrne and G. McGuire, Certain new quadratic APN functions are not APN infinitely
often, in Abstract Book of the Workshop on coding and cryptography, N. S. D. Augo and
J.-P. Tillich, eds., INRIA, 2007, pp. 59–68.

[18] A. Canteaut, P. Charpin and H. Dobbertin, Weight divisibility of cyclic codes, highly nonlin-
ear functions on F2m , and crosscorrelation of maximum-length sequences, SIAM J. Discrete
Math., 13 (2000), pp. 105–138.

22



[19] C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for
DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), pp. 125–156.

[20] F. Chabaud and S. Vaudenay, Links between differential and linear cryptanalysis, in Advances
in Cryptology – EUROCRYPT 94, A. D. Santis, ed., vol. 950 of Lecture Notes in Computer
Science, New York, 1995, Springer-Verlag, pp. 356–365.

[21] J. Dillon and H. Dobbertin, New cyclic difference sets with Singer parameters., Finite Fields
Appl., 10 (2004), pp. 342–389.

[22] J. F. Dillon. slides from talk given at ”Polynomials over Finite Fields and Appliocations”,
held at Banff International Research Station, 2006.

[23] C. Ding and J. Yuan, A new family of skew Paley-Hadamard difference sets, J. Comb. The-
ory Ser.A, 113 (2006), pp. 1526–1535.

[24] H. Dobbertin, Almost perfect nonlinear power functions on GF(2n): The Niho case, Informa-
tion and Computation, 151 (1999), pp. 57–72.

[25] , Almost perfect nonlinear power functions on GF(2n): the Welch case, IEEE Trans.
Inform. Theory, 45 (1999), pp. 1271–1275.

[26] , Almost perfect nonlinear power functions on GF(2n): A new case for n divisible by 5, in
Proceedings of the conference on Finite Fields and Applications, Augsburg 1999, D. Jungnickel
and H. Niederreiter, eds., Berlin, 2001, Springer-Verlag, pp. 113–121.

[27] Y. Edel, G. Kyureghyan and A. Pott, A new APN function which is not equivalent to a power
mapping, IEEE Trans. Inform. Theory, 52 (2006), pp. 744–747.

[28] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation function, IEEE
Trans. Inf. Th., 14 (1968), pp. 154–156.

[29] S. W. Golomb and G. Gong, Signal design for good correlation, Cambridge University Press,
Cambridge, 2005. For wireless communication, cryptography, and radar.
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