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Abstract

We construct large caps in projective spaces of small dimension
(up to 11) defined over fields of order at most 9. The constructions
are both theoretical and computer-supported. Some more computer-
generated 4-dimensional caps over larger fields are also mentioned.
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1 Introduction

A cap in PG(k, q) is a set of points no three of which are collinear. If we write
the n points as columns of a matrix we obtain a (k + 1, n)-matrix such that
every set of three columns is linearly independent, hence the check matrix of
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a linear code of minimum distance ≥ 4. It follows that a cap of n points in
PG(k, q) is equivalent with a q-ary linear [n, n− k − 1, 4]q code.

Denote by m2(k, q) the maximum cardinality of a cap in PG(k, q). We
want to construct large caps in the cases of dimension k ≤ 11, over fields IFq,
where q ≤ 9, thus establishing lower bounds on m2(k, q) in these cases. We
collect our results in Table 4.

As m2(k, 2) = 2k we can and will assume q > 2 in the sequel. Trivially
m2(1, q) = 2. In projective dimensions 2 and 3 we have

m2(2, q) =

[
q + 1 if q is odd
q + 2 if q is even

m2(3, q) = q2 + 1.

Caps of size q + 1 in PG(2, q) and caps of size q2 + 1 in PG(3, q) may
be constructed as quadrics. The (q2 + 1)−caps in PG(3, q) are known as
ovoids. They have the property that they meet each hyperplane in either
q+1 points (these are the intersecting hyperplanes) or in one point (these
are the tangent hyperplanes). Each point of the ovoid is on precisely one
tangent hyperplane.

For projective dimension k > 3 quadrics cannot be caps. No canonical
model for large caps is known in dimension > 3. In fact, only three values
m2(k, q) are known when q > 2, k > 3 :

m2(4, 3) = 20, m2(5, 3) = 56 and m2(4, 4) = 41

(see [13, 10, 4]). Direct constructions in dimension 4 were given in [1, 2]. For
small q these are superseded by constructions obtained with different means.

The following result from [3] seems to be the most general recursive con-
struction known:

Theorem 1. Assume the following exist:

1. An n-cap K1 ⊂ PG(k, q) and a hyperplane H of PG(k, q) such that
|K1 \H| = w, and

2. an m-cap in PG(l, q).

Then there is an {wm+ (n− w)}-cap in PG(k + l, q).
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The special case w = n of Theorem 1 yields a product construction due to
Mukhopadhyay ([12]) (an n-cap in AG(k, q) and an m-cap in PG(l, q) allow
the construction of an mn-cap in PG(k + l, q)).

The following slight generalization of the product construction, which was
first stated in [3], is useful for recursive constructions. It is easy to see that
the following somewhat more general statement is true.

Theorem 2. Assume the following exist:

1. An (affine) n-cap K1 ⊂ PG(k, q), which is avoided by some i ≥ 1
hyperplanes in general position, and

2. an m-cap K2 ⊂ PG(l, q), which is avoided by some j ≥ 0 hyperplanes
in general position.

Then the product cap is avoided by some i+ j − 1 hyperplanes in general
position.

The specialization n = k = 2 of Theorem 2 yields the doubling con-
struction: an m-cap in PG(l, q) yields a 2m−cap in AG(l + 1, q).

Another specialization of Theorem 1 yields a recursive construction, which
is originally due to Segre [14]:

Theorem 3. An n−cap in PG(k, q) implies a {q2n+1}−cap in PG(k+3, q).

Theorem 3 is obtained by applying Theorem 1 in the case when the first
cap is an ovoid.

Another useful recursive construction from [3] is the following:

Theorem 4. Assume the following exist:

1. An n-cap K1 ⊂ PG(k, q) possessing a tangent hyperplane, and

2. an m-cap K2 ⊂ PG(l, q) possessing a tangent hyperplane.

Then there is an {nm− 1}-cap in PG(k + l, q).

An application of Theorem 4 to ovoids yields {q4+2q2}−caps in PG(6, q).
It was shown in [3] that another application of Theorem 1 yields q2(q2 +
1)2−caps in PG(9, q).

Another construction from [3] led us to a family of {(q+1)(q2 +3)}−caps
in PG(5, q).
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Table 1: The blocks of D : 2− (6, 3, 2).

123 236
124 245
135 256
146 345
156 346

We start our description of improvements in small dimensions over small
fields with the ternary case. It plays a particular role. Whereas most con-
structions over larger fields use ovoids as main ingredients, in the ternary
case the Hill cap [10] is the principal ingredient.

2 The ternary case

We start with a brief description of the Hill cap, which follows [8],p.191f.
One ingredient is the design 2 − (6, 3, 2), which is uniquely determined. Its
ten blocks are given in Table 1.

The blocks of this design D may be described as one orbit of 3-sets under
the action of the group PSL2(5) ∼= A5. As

(
6
3

)
= 20 and as complements of

blocks are not blocks we see that we obtain a partition of all 3-subsets into
two designs 2− (6, 3, 2), in other words: the 3-subsets, which are not blocks
of our design D, form a design D with the same parameters. The cap will
be described as a family of 56 one-dimensional subspaces of IF 6

3 (equivalently
112 nonzero vectors), where our designs are defined on the coordinates. The
vectors of type R are defined as the vectors of weight 6 with an even number
of entries 2. We observe the relationship with the binary all even-code. The
number of 1-dimensional subspaces of type R is 16 (there are 32 vectors of
type R, each such 1-subspace contains two of them). The points of type
D are those represented by 6−tuples of weight 3, whose support forms a
block of the design. The number of such points is 10 · 4 = 40. The Hill cap
H ⊂ PG(5, 3) is defined as the union of the 1-dimensional subspaces of type
R and of type D, hence a set of 16+40 = 56 points in PG(5, 3). We omit the
proof that H is indeed a cap. The proof makes use of the following property
of design D : whenever two blocks have two points in common, there is no
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Table 2: A 236-cap in AG(7, 3)

(0,D)

(0,R)

(1,D)

(1,R)

(2,U)

third block contained in their union. Clearly an isomorphic copy H of the
Hill cap is generated by the points of types R and D, that is we replace the
design D by its complement.

The following construction from [7] is closely related to the Hill cap. The
doubling construction mentioned in Section 1 shows that the 112=32+80
vectors of types R or D form a cap in AG(6, 3). Likewise the vectors of types
R or D form a cap in AG(6, 3). Let U denote the family of 12 vectors of weight
1 in IF 6

3 . We claim that the 236 vectors given in Table 2 form a 236-cap in
AG(7, 3). This is the Calderbank-Fishburn cap.

Theorem 5. The 236 vectors in AG(7, 3) as given in Table 2 form a cap.

Proof. We have seen that the two first types, with prefix 0, form a 112-cap,
likewise the two types with prefix 1. The last type consists of the 12 vectors
with prefix 2 followed by a vector of weight 1. In order to see that we have
an affine cap we have to show that no three of our vectors sum to 0. Assume
x, y, z are from our collection and x + y + z = 0. The prefixes cannot be all
0 or all 1. It is also clear that the prefixes cannot all be 2, as the sum of two
vectors of weight 1 can never have weight 1. We conclude that the prefixes
of x, y, z are 0,1,2. The sum of two vectors of type R never has weight 1.
The sum of a vector of type R and a vector of type D or D has weight ≥ 3.
As it is also clear that the sum of a vector of type D and a vector of type D
has weight > 1 we conclude that we have a 236-cap in AG(7, 3).

2.1 A 248-cap in PG(7, 3)

The Calderbank-Fishburn cap is in AG(7, 3) and has 236 points. In projective
notation it consists of the points generated by the vectors in IF 8

3 of the types
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Table 3:

(1,0,D)

(1,0,R)

(1,1,D)

(1,1,R)

(1,2,U)

given in Table 3.

Theorem 6. The 236 vectors in AG(7, 3) as given in Table 3 together with
the 12 points represented by vectors of type (0, 1,U) form a complete 248-cap
in PG(7, 3).

Proof. It is clear that the 12 new points contained in the hyperplane x1 = 0
form a cap. It remains to show that the difference between two points of
the Calderbank-Fishburn cap never has the form (0, 1, U). Assume this is
the case. The presence of the entry 1 in the second coordinate restricts the
possibilities. Consider the last coordinate section. It is obvious that a vector
of weight 1 cannot be involved in the difference. Also, the difference between
type R and type D or D has weight ≥ 3. We have already used the fact that
the sum or difference of two vectors of type R cannot have weight 1. The
only case remaining is the difference between type D and type D. Obviously,
this results in weight ≥ 2.

The points of type (0, 1, U) are the only points in PG(7, 3) extending the
Calderbank-Fishburn cap to a 237−cap. Assume in fact there is such an
extension point. Types (0, 0, x) and (1, ∗, x) are excluded by invoking the
completeness of the Hill cap. Only type (0, 1, x) needs to be considered. We
have to show that the projective point defined by (0, 1, x) is on a line through
two points of the Calderbank-Fishburn cap provided wt(x) 6= 1. In case x = 0
use a point of type (1, 1, R) and a point of type (1, 0, R). If wt(x) ∈ {2, 3}
use points of types (1, 0,D) and (1, 2, U). In case wt(x) ∈ {4, 5} two points
of type (1, 0,D) can be used. When wt(x) = 6 we can use a point of type
(1,1,D) and a point of type (1, 0,D).
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2.2 Caps in PG(8, 3)

It follows from Segre’s construction (see Section 1) that m2(8, 3) ≥ 9 ·
m2(5, 3)+1 = 505. We will obtain larger caps by starting from a 504-cap ob-
tained as an application of the product construction (the special case w = n
of Theorem 1) to the Hill cap in PG(5, 3) and the affine part of the ovoid.
Our new caps will be obtained as extensions of this 504-cap. We use a de-
scription of the affine part of the ternary ovoid as given in [1]. It consists
of the pairs (a, b), where a ∈ IF3, b ∈ IF9, b

4 = a. Observe that this is a
set of vectors in IF 3

3 . The elements of the product cap are the points (1-
dimensional subspaces) generated by the vectors of the form (a, b, h), where
a ∈ IF3, b ∈ IF9, h ∈ IF 6

3 , b
4 = a and h varies over representatives of the points

of the Hill cap H. Different choices of representatives lead to essentially dif-
ferent product caps. Our choice of representatives is based on computer
experiments, which produced large caps. As representatives of vectors of
type R we choose (1, 1, 1, 1, 1, 1) and all vectors with four entries = 2. For ev-
ery block g ∈ D the four vectors representing the elements of H with support
g will be chosen such that the nonzero entries are the rows of the following
array:

222
211
121
112

One reason for this choice is that the sum of any two different such vec-
tors has weight 1. This will turn out to be profitable in the construction
of extensions. Our representatives of the Hill cap are the columns of the
following matrix:

2211221122110000000000002211000022110000 1112122212222221
2121212100002211000022110000000000002211 1121212221222212
2112000021210000221121210000221100000000 1211221222122122
0000211200002121212100002121212100000000 1222111222211222
0000000021122112211200000000000021212121 1222222111121222
0000000000000000000021122112211221122112 1222222122212111

Denote the set of these vectors by H0. With this choice our product cap
is generated by the vectors in

C0 = {(a, b, h), h ∈ H0, a ∈ IF3, b ∈ IF9, b
4 = a}
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We denote it by 〈C0〉.

Proposition 1. There are precisely 111 points in PG(8, 3) extending 〈C0〉 to
a 505-cap. These extension points are generated by the vectors (1, 0, x), x ∈
IF 6

3 , where wt(x) is even, the entries of x sum to 0, x is not constant ±1 and
in case wt(x) = 4 the following additional condition is satisfied:

• Let g1, g2 be the blocks of D such that supp(x) = g1 ∪ g2. Then x is not
constant on the intersection g1 ∩ g2.

Denote by E the set of these extension points. Observe that the second
segment in (1, 0, x) represents an element in IF9. The entry 0 therefore stands
for (0, 0). Apart from the 0-vector we have 30 choices for x of weight 2. As
vectors of weight 6 with vanishing sum have 3 entries 1 and 3 entries 2 this
gives us

(
6
3

)
= 20 choices. Every 4-set is the union of two uniquely determined

blocks of D. The number of extension points (1, 0, x), where wt(x) = 4, is
therefore

(
6
4

)
· 4 = 60.

The proof of Proposition 1 needs a series of lemmas. We show at first
that vectors yielding extensions must have the form ±(1, 0, x). In order to
prove our claim it has to be shown equivalently that every vector e ∈ IF 9

3 not
of this form can be written as a linear combination of vectors from C0 with
ternary coefficients. Observe that due to the completeness of the Hill cap we
have

±H0 ±H0 = IF 6
3 .

We will also need the following property of IF9, which is easily checked to be
true:

Lemma 1. Let U = {u | u4 = 1} ⊂ IF9 and U = {u | u4 = 2} ⊂ IF9.
Whenever V1, V2 ∈ {U,U} and λ, µ = ±1 we have

λV1 + µV2 ⊇ IF9 \ {0}.

Let now e = (z, y, x) be a vector generating an extension point. The fact
that ±H0 ± H0 = IF 6

3 excludes case (z, y) = (0, 0). Likewise, we can write
(0, y, 0) = (1, b1, h) − (1, b2, h) where b41 = b42 = 1 and h ∈ H0 arbitrary,
because of Lemma 1. Assume e = (0, y, x), where x, y 6= 0. Because of the
completeness of the Hill cap we can find λ, µ = ±1 and h1, h2 ∈ H0 such that
λh1 + µh2 = x. We find a1, a2 = ±1 such that λa1 + µa2 = 0. Because of
Lemma 1 there exist b1, b2 such that b4i = ai and λb1+µb2 = y. We have shown
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that vectors starting with an entry 0 do not produce extension points. We can
choose without restriction e = (1, y, x). As (1, y, 0) = (2, b1, h)− (1, b2, h) for
suitable b1, b2 such that b41 = 2, b42 = 1, we have x 6= 0. The case e = (1, y, x),
where y and x are nonzero, is excluded by the same argument as before.

We have seen that every extension point is generated by a vector e =
(1, 0, x).

Lemma 2. Let e = (1, 0, x). Then e extends 〈C0〉 to a 505-cap if and only if
x cannot be written in the form ±(h1 + h2), where h1, h2 ∈ H0.

Proof. It is clear that e is not a multiple of an element of C0. Assume e =
(1, 0, x) = λ(a1, b1, h1)+µ(a2, b2, h2), where λ, µ = ±1. The middle coordinate
section shows λb1 = −µb2, after taking fourth powers a1 = a2, which we
denote by a. The first coordinate shows (λ + µ)a = 1. It follows that λ =
µ = −a 6= 0. The last coordinate section shows x = λ(h1 + h2) as claimed.

Lemma 2 shows directly that (1, 0, 0) generates an extension point. Also,
(1, 0, x) has this property if and only if (1, 0,−x) has.

Lemma 3. If x has odd weight, then e = (1, 0, x) does not generate an
extension point.

Proof. Clearly we use Lemma 2. As
(1, 0, 0, 0, 0, 0) = (2, 2, 2, 0, 0, 0) + (2, 1, 1, 0, 0, 0) we see that x cannot have
weight 1. Consider the case wt(x) = 3. Choosing h1, h2 of type D with
identical support kills the vectors x of weight 3, whose support forms a
block of D. Assume now supp(x) forms the complement of a block, with-
out restriction supp(x) = {4, 5, 6}. The choices h1 = (a, b, c, 0, 0, 0), h2 =
(−a,−b,−c, d, e, f) show that we do not obtain extension points. Similar
arguments exclude the case wt(x) = 5.

Lemma 4. Let x ∈ IF 6
3 such that wt(x) = 2. Then (1, 0, x) generates an

extension point if and only if the coordinates of x sum to 0.

Proof. As (2, 2, 0, 0, 0, 0) = (1, 1, 1, 1, 1, 1)+(1, 1, 2, 2, 2, 2) the vector x cannot
be constant on its support. Let now x = (1, 2, 0, 0, 0, 0). We have to show
that (1, 0, x) generates an extension point. Clearly we use Lemma 2. Assume
x = ±(h1+h2). In particular the entries of h1+h2 must sum to 0. This shows
that without restriction h1 is of type R and h2 is of type D. This however is
impossible as h1 + h2 has weight ≥ 3.
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Lemma 5. If wt(x) = 6, then (1, 0, x) generates an extension point if and
only if x has three entries 1 and three entries 2.

Proof. Consider x = ±(h1 +h2) again, where wt(x) = 6. It is impossible that
both h1 and h2 have type D. If both have type R, then necessarily h1 = h2.
This excludes all vectors x of weight 6 with an even number of entries 2. Let
now h1 of type D and h2 of type R, without restriction h1 = (a, b, c, 0, 0, 0). It
follows h2 = (a, b, c, ∗). Up to permutations two cases have to be considered.
If (a, b, c) = (2, 2, 2), then h2 = (2, 2, 2, 2, 1, 1) and x = ±(1, 1, 1, 2, 1, 1). If
(a, b, c) = (2, 1, 1), then h2 = (2, 1, 1, 2, 2, 2) and x = (1, 2, 2, 2, 2, 2). The
lemma follows.

Finally, assume wt(x) = 4. If hi are both of type R, then their sum
has weight 4 if and only if up to permutation h1 = (2, 2, 2, 2, 1, 1), h2 =
(1, 2, 2, 2, 2, 1). This shows that x cannot have an odd number of entries 2.
Let h1 be of type D and h2 of type R. Choose h1 = (2, 1, 1, 0, 0, 0), h2 =
(1, 2, 1, 2, 2, 2). Then h1 + h2 = (0, 0, 2, 2, 2, 2). As for every 4-subset we can
find a block intersecting it in precisely one point it follows that constant x
of weight 4 are impossible. Other choices of hi in this subcase do not yield
further restrictions. Let h1, h2 be of type D, with supports g1, g2, respectively.
Clearly g1 6= g2. If |g1 ∩ g2| = 1, then x = ±(h1 + h2) of weight 4 has an odd
number of entries 2. This case has been excluded already. There remains the
case |g1 ∩ g2| = 2. Without restriction g1 = {1, 2, 3}, g2 = {1, 2, 4}. We must
have h1 = (a, b, c, 0, 0, 0), h2 = (a, b, 0, d, 0, 0). and x = ±(−a,−b, c, d, 0, 0).
No new conditions are obtained unless (a, b, c) = (2, 2, 2). Necessarily d = 2
and x = ±(1, 1, 2, 2, 0, 0). This completes the proof of Proposition 1.

The following lemma will facilitate the construction of extensions of our
product cap.

Lemma 6. Let ei = (1, 0, xi), i = 1, 2. The following are equivalent:

• There is a vector of C0, which can be expressed as a linear combination
of e1 and e2.

• There is h ∈ H0 such that h = ±(x1 − x2).

Proof. Assume (a, b, h) = λ(1, 0, x1) + µ(1, 0, x2). The first and second coor-
dinate sections show a = b = 0, µ = −λ. The result follows.

Theorem 7. The 20 extension points generated by (1, 0, x), where wt(x) = 6,
together with 〈C0〉 generate a complete 524-cap in PG(8, 3).
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Proof. Assume g is a line containing more than two points of our set. It
is impossible that g contains only one extension point. Let g be the line
connecting two extension points Pi, i = 1, 2 generated by ei = (1, 0, xi),
where the xi have weight 6 and three entries of each nonzero kind. Assume g
contains a point from 〈C0〉. By Lemma 6 this means that h = ±(x1−x2) ∈ H0.
It follows that the entries of h must have sum 0. This shows that h is either
constant or plus minus the characteristic function of a block. It is clear that
this does not happen. Assume finally that g contains a third of our extension
points of weight 6. By the usual argument based on the first entry it follows
that x1 +x2 +x3 = 0. It is however clear that the sum of two vectors of type
1323 cannot have this type again.

Finally, we show that our 524-cap is complete. It suffices to show that
no element from E extends it to a cap. This is obvious in case x = 0. In the
cases when wt(x) = 2 and wt(x) = 4 this is shown by the following identities:

(1, 2, 0, 0, 0, 0) + (1, 2, 1, 1, 2, 2) + (1, 2, 2, 2, 1, 1) = 0

(1, 2, 1, 2, 0, 0) + (1, 2, 1, 2, 1, 2) + (1, 2, 1, 2, 2, 1) = 0.

Let us construct extensions of 〈C0〉 starting from extension points gener-
ated by (1, 0, x), where wt(x) = 2.

Lemma 7. If wt(x1) = wt(x2) = 2 and Pi = 〈(1, 0, xi)〉 ∈ E , then 〈C0〉 ∪
{P1, P2} is a 506-cap if and only if either supp(x1) ∪ supp(x2) is not a block
or if the entries of x1 and x2 at supp(x1) ∩ supp(x2) are the same.

Proof. We apply Lemma 6. It is clear that h = ±(x1−x2) ∈ H0 can happen
only when h has weight 3. This implies that supp(x1) ∪ supp(x2) must be a
block and the entries of x1 and x2 at supp(x1) ∩ supp(x2) are different. It is
clear that this is an equivalent description.

The usual argument based on the first entry shows that three differ-
ent vectors ei = (1, 0, xi), i = 1, 2, 3 are linearly dependent if and only if∑3

i=1 xi = 0.
Let us encode the information at hand in a graph. Consider the complete

directed graph on vertices 1, 2, 3, 4, 5, 6. Identify the arc from i to j with the
vector x with entry 1 in coordinate i, entry 2 in coordinate j. The arcs of
the graph are in canonical bijection with the vectors x of weight 2 such that
(1, 0, x) ∈ E . By the preceding lemmas a collection of k arcs will give us a
(504 + k)-cap extending 〈C0〉 if and only if the following are satisfied:
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1. No three arcs form a directed triangle.

2. If two arcs form a directed path, then their endpoints do not form a
block.

We present a solution with 10 arcs, where the arcs consist of all directed
edges of the pentagon (1, 5, 2, 3, 4) (in this order, observe that 1 and 5 are
neighbours).

It is a solution as there are no triangles in the pentagon, and the union
of three consecutive vertices never is a block of D. Here is the matrix whose
columns generate the 10 points of the extension.

1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 1 2 1 0 0
0 0 2 1 0 0 0 0 2 1
2 1 0 0 0 0 0 0 1 2
1 2 0 0 0 0 1 2 0 0
0 0 1 2 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0

The resulting 514-cap is not complete. An exhaustive computer search
produced as largest extension a (complete) 534-cap. 1 The 20 extension
points are generated by the columns of the following array.

1 1 1 2 1 2 2 2 1 2 1 2 2 1 1 2 2 2 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2 2 0 2 2 1 1 2 0 2 1 0 0 2 1 1 2 2
2 2 0 2 2 2 1 2 0 2 0 1 2 1 0 1 2 1 2 1
0 0 2 2 0 1 2 2 2 1 2 2 2 0 1 1 1 2 1 2
1 2 0 1 2 2 2 2 0 1 1 1 1 2 2 2 2 2 0 0
0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1Here is an error in the printed article, only a 532-cap is given, the two last points are
missing there.
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2.3 Larger dimensions

We have seen a complete 534-cap and a complete 524-cap in PG(8, 3). In
dimension 9 we were not able to improve on the bound m2(9, 3) ≥ 20 · 56 =
1120, which results from an application of the product construction to the
Pellegrino cap in AG(4, 3) and the Hill cap. There is a complete such cap. A
complete 2744−cap in PG(10, 3) was found by a computer construction. An
application of the product construction to the Hill cap and the (affine) double
of the Hill cap yields a complete cap of size 112 · 56 = 6272 in PG(11, 3).

3 The Glynn cap and generalizations

The original description of the Glynn cap is in [9]. We construct it from a
slightly different point of view. Let B = PG(2, q) ⊂ PG(2, q2) be a Baer
subplane, whose points we write in homogeneous coordinates as (a : b :
c), where a, b, c ∈ IFq. The number of exterior points (points outside B) is
q4 + q2 + 1 − (q2 + q + 1) = q4 − q. It is a matter of elementary counting
that every exterior point is on precisely one line of B and that every line has
either 1 or q + 1 points in common with B (the lines of the latter type are
the lines of B). Clearly the group G = G0 × 〈φ〉 = PGL3(q) × 〈φ〉, where
φ(x) = xq permutes B and the points outside B. We have

| PGL3(q) |= q3(q2 − 1)(q3 − 1).

We will use the following lemma, which is easy to prove:

Lemma 8. The group G0 = PGL3(q) ⊂ PGL3(q
2) acts transitively on the

points outside the Baer subplane B. It acts regularly (in particular transi-
tively) on pairs (P,Q), where P /∈ B,Q /∈ B,PQ /∈ B.

The orbits of 〈φ〉 on exterior points form pairs of conjugate points.
These pairs are permuted by the action of G0.

Definition 1. Consider the following mapping γ : (IFq2)3 −→ IF 6
q

γ(a, b, c) = (N(a), N(b), N(c), tr(abq), tr(acq), tr(bcq)).

Here N : IFq2 −→ IFq is the norm and tr is the trace. The norm part
shows that γ(a, b, c) = 0 can only happen if (a, b, c) = 0. Also, γ(ua, ub, uc) =
N(u)γ(a, b, c). This shows that γ induces a mapping γ : PG(2, q2) −→
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PG(5, q). It is clear that conjugate points in PG(2, q2) have the same image
under γ. Let P ∈ B. We can choose notation such that a, b, c ∈ IFq. It follows
γ(P ) = (a2 : b2 : c2 : 2ab : 2ac : 2bc).

Theorem 8. There is an injective group homomorphism

ι : PGL(3, q) −→ PGL(6, q)

such that for every (a : b : c) ∈ PG(2, q2) and g ∈ PGL(3, q) we have

γ((a : b : c)g) = γ(a : b : c)ι(g).

If g =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 , then

ι(g) =


a2

11 a2
21 a2

31 a11a21 a11a31 a21a31

a2
12 a2

22 a2
32 a12a22 a12a32 a22a32

a2
13 a2

23 a2
33 a13a23 a13a33 a23a33

2a11a12 2a21a22 2a31a32 a11a22 + a21a12 a11a32 + a31a12 a21a32 + a31a22

2a11a13 2a21a23 2a31a33 a11a23 + a21a13 a11a33 + a31a13 a21a33 + a31a23

2a12a13 2a22a23 2a32a33 a12a23 + a22a13 a12a33 + a32a13 a22a33 + a32a23

 .

Proof. The proof is straightforward. We use the obvious identity

N(a+ b+ c) = N(a) +N(b) +N(c) + tr(abq) + tr(acq) + tr(bcq).

As an example, the first component of (a : b : c)g has norm

a2
11N(a) + a2

21N(b) + a2
31N(c) + a11a21tr(ab

q) + a11a31tr(ac
q) + a21a31tr(bc

q).

This explains the first row of ι(g).

Apparently such a statement was first proved in [6].

Lemma 9. If a, b ∈ IFq2 and N(a) = N(b), tr(a) = tr(b), then b = a or
b = aq.

Proof. We can assume ab 6= 0. The trace equation shows b = a + xq − x for
some x. The norm equation reads

N(a) = N(b) = (aq +x−xq)(a+xq−x) = N(a)+(aq−a)(xq−x)−(xq−x)2,

hence (aq − a)(xq − x) = (xq − x)2. If xq = x, then b = a, if not then
xq − x = aq − a and b = a+ aq − a = aq.
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Proposition 2. Let P = (a : b : c) and P ′ = (a′ : b′ : c′) be exterior points
such that γ(P ) = γ(P ′). Then either P ′ = P or P ′ = P q.

Proof. By Theorem 8 and the transitivity of PGL(3, q) on exterior points
we can assume P = (a : 1 : 0). The norm part of γ shows that the third
coordinate of P ′ must vanish. We can choose P ′ = (a′ : 1 : 0). As γ(P ) =
(N(a) : 1 : 0 : tr(a) : 0 : 0) and analogously for γ(P ′), we have N(a) = N(a′)
and tr(a) = tr(a′) It follows from Lemma 9 that a′ = a or a′ = aq.

Definition 2. Let Γq ⊂ PG(5, q) be the image of γ when restricted to exterior
points.

We have seen that | Γq |= q(q3 − 1)/2. Glynn’s observation is equivalent
with the claim that Γ4 is a cap. The restriction of γ to the exterior points of
the form (a : 1 : 0) gives us (q2 − q)/2 points of Γq, which are contained in a
plane. It follows that Γq cannot be a cap when q > 4.

Lemma 10. The points (N(a) : tr(a) : 1), where a varies over a set of
representatives for the orbits of the Galois group of IF16\IF4, form a hyperoval
in PG(2, 4).

Proof. Let a, b, c ∈ IF16 \ IF4 as above. We have to show that

M =

 1 tr(a) N(a)
1 tr(b) N(b)
1 tr(c) N(c)


is a regular matrix. Observe that all its entries are nonzero. We use the
obvious facts that there are only two conjugate pairs of elements IF16 \ IF4

with a given trace and also just two such conjugate pairs with a given nonzero
norm. The second column cannot be constant. Assume tr(a) = tr(b). It
follows from Lemma 9 that N(a) 6= N(b). The matrix is regular in this case.
We conclude that the entries in the second row are pairwise different. As
every linear combination of the first and the second column with nonzero
coefficients has some vanishing entry, we conclude that M is regular unless
the third column is a multiple of either the first or the second column. The
first possibility is excluded because of our basic fact concerning norms. As
tr(x)/N(x) = tr( 1

x
) the second possibility is excluded as well.

Theorem 9 (Glynn cap). Γ4 ⊂ PG(5, 4) is a cap.
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Proof. Let P1, P2, P3 be any three exterior points, which are also pairwise
non-conjugate. We have to prove that their images under γ are not collinear.
Let g ∈ PGL(3, q). It follows from Theorem 8 that γ(P1), γ(P2), γ(P3) are
collinear if and only if γ(P1g), γ(P2g), γ(P3g) are collinear, in other words
we can use the action of PGL(3, q). Assume γ(P1), γ(P2), γ(P3) are collinear.
Because of the transitivity of PGL(3, q) on exterior points we can choose
P1 = (a1 : 1 : 0). Assume at first P1, P2, P3 are collinear on [0, 0, 1]. We
have Pi = (ai : 1 : 0), where a1, a2, a3 are non-conjugate from IF16 \ IF4. The
corresponding matrix A is

N(a1) 1 0 tr(a1) 0 0
N(a2) 1 0 tr(a2) 0 0
N(a3) 1 0 tr(a3) 0 0

It follows from Lemma 10 that A has rank 3. We are reduced to the
generic case that two of our points Pi are on a common exterior line. Because
of Lemma 8 we can choose P1 = (a : 1 : 0), P2 = (b : 0 : 1) and we can even
fix a and b. Choose b = a such that N(a) = tr(a) = 1. If P3 vanishes in the
last coordinate, then A clearly has rank 3. Let P3 = (x : y : 1). Matrix A is

1 1 0 1 0 0
1 0 1 0 1 0

N(x) N(y) 1 tr(xy4) tr(x) tr(y)

Assume A has rank 2. Clearly we must have tr(y) = 0, hence y ∈ IF4.
The fifth column must coincide with the third, so tr(x) = 1. Columns 4
and 2 are identical, hence N(y) = y2 = ytr(x) = y. This shows y ∈ {0, 1}.
Column 1 must be the sum of columns 2 and 3, hence N(x) = y2 +1 = y+1.
If y = 1, then x = 0 and P3 is interior, contradiction. We have y = 0,
hence N(x) = tr(x) = 1. It follows from Lemma 9 that P3 and P2 are either
identical or conjugate, another contradiction.

3.1 A variation

Although Γq has no chance of being a cap for q > 4 it may contain large caps.
We used a computer search and found a complete 434-cap in Γ7 ⊂ PG(5, 7),
which has a hyperplane intersection of 7 points.
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4 A recursive construction

Definition 3. Let C ⊂ PG(k, q) be a n−cap, q odd and H the hyperplane
x1 = 0 intersecting C in w points. We call C suitably generated with
respect to H if there are sets A,B ⊂ IF k

q such that the following hold:

1. C \H consists of the 1-dimensional subspaces of IF k+1
q generated

by the (1, a), a ∈ A, and C ∩H consists of the 1-dimensional subspaces
generated by the (0, b), b ∈ B.

2. A = −A

3. (B ±B) ∩ 2A = ∅.

Lemma 11. Consider the situation of Definition 3, where n − w > 1. The
following hold:

• 0 /∈ A ∪B.

• If a ∈ A, then λa ∈ A if and only if λ = ±1.

• IFqA ∩ IFqB = {0}.

• (±A± A) ∩B = ∅

Proof. Clearly 0 /∈ B. If 0 ∈ A, choose some 0 6= a ∈ A. The points gen-
erated by (1, 0), (1, a), (1,−a) are collinear, contradiction. Assume λa ∈ A,
where λ 6= ±1. Then the vectors (1, a), (1,−a), (1, λa) are linearly dependent,
contradiction. Assume λa = µb, where 0 6= λ, µ ∈ IFq, a ∈ A, b ∈ B. Then
(1, a), (1,−a) and (0, b) generate three collinear points of C, contradiction.
Assume b = ±a± a′. We can choose notation such that b = a− a′. As 0 /∈ B
we have a′ 6= a. We obtain the contradiction that (1, a), (1, a′) and (0, b)
generate three collinear points of C.

Proposition 3. Let q ≡ 1(mod 4). There is an ovoid O ⊂ PG(3, q), which
is suitably generated with respect to an (intersecting) hyperplane.

Proof. We describe the ovoid by the equation −cX2
1 +X2

2 +2X3X4 = 0, where
c ∈ IFq is a non-square. Use homogeneous coordinates (x1 : x2 : x3 : x4) for
the description of points in PG(3, q). Let B = {Bx | x ∈ IFq} ∪ {B∞}, where
Bx = (x,−x2/2, 1), B∞ = (0, 1/2, 0) and A = {(x2, x3, x4) | x2

2 + 2x3x4 = c}.
Then O is generated by (1, a), a ∈ A and (0, b), b ∈ B. Clearly we have
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A = −A. There remains to prove the last condition of Definition 3. Assume
there are two elements of B whose sum or difference has the form 2a, a ∈ A.
If B∞ is involved, then a = (B∞ ±Bx)/2 = (±x

2
, 1

4
∓ x2

4
,±1

2
). The definition

of A yields c = ±1
4
, which is a contradiction as c is a non-square. Assume

a = (Bx ± By)/2 ∈ A. If the sign is −1 we obtain the contradiction c =

(x− y)2/4. If the sign is +1 we have a = (x+y
2
,−x2+y2

4
, 1), and by definition

of A finally c = (x+y)2

4
− x2+y2

2
= −(x−y)2/4, another contradiction. Observe

that we have made substantial use of the fact that −1 is a square.

Theorem 10. Let the n−cap C ⊂ PG(k, q) be suitably generated in the sense
of Definition 3, where |B| = w, |A| = n−w. If q > 3 we can construct a cap
K ⊂ PG(k + 1, q) of size 2(n + w + 1), which is affine if q > 5 and has a
tangent hyperplane if q = 5.

Proof. We define K as generated by the vectors from U ∪ V ∪W ∪Z, where

U = (1, 0, A), V = (0, 1, A),W = (±1,±1, B), Z = {(1, u, 0), (1,−u, 0)}.

Here u ∈ IFq \ {0, 1,−1}. We have |U | = |V | = n − w, |W | = 4w, |Z| = 2.
Clearly U and V are caps. It follows from [3] that W ∪ Z is a cap. Let
g be a line. If g passes through two points of U, it is contained in the
hyperplane x2 = 0 and therefore does not contain a third point of K. An
analogous argument holds for V. As 0 /∈ A ∪ B by Lemma 11, the same ar-
gument works for the line connecting the two points of Z. Assume g passes
through a point of Z and a point of W. A third point from K on g would
have to be in U ∪ V, without restriction in U. We obtain a linear relation
λ1(1, 0, a) + λ2(1, u, 0) = (±1,±1, b). The third component yields a contra-
diction to Lemma 11. Assume g passes through two points from W. A third
point would have to be from U ∪V, without restriction from U. This leads to
a linear relation λ1(1, 0, a) + λ2(±1,±1, b) = (±1,±1, b′). The first two com-
ponents show λ2 = ±1, λ1 = ±2. The third component yields a contradiction
to the last axiom in Definition 3. We have seen that a line g through three
points of K will have to contain a point from U and a point from V. Assume
the third point comes from Z. We obtain λ1(1, 0, a) + λ2(0, 1, a

′) = (1, u, 0).
It follows that λ1 = 1, λ2 = u, finally a = −ua′, contradiction to the second
statement of Lemma 11. If the third point is from W we obtain a contradic-
tion to the last statement of Lemma 11.
We have proved that K is a cap. Add λ times the first coordinate to the
second coordinate, where λ /∈ {0, 1,−1}. The result is nonzero for all vectors
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generating K outside Z. If q > 5 we can choose λ 6= ±u and obtain that K is
affine. In case q = 5 we obtain a tangent hyperplane.

Theorem 10 improves upon the doubling construction (see Section 1).
Application in case q = 5 yields a 66-cap in PG(4, 5) possessing a tangent
hyperplane. We can apply Theorem 4 either with the ovoid or with our 66-
cap as second ingredient. This results in a complete 1715-cap in PG(7, 5)
and in a complete 4355-cap in PG(8, 5).

5 The known lower bounds

Table 4 contains the best lower bounds known to the authors on m2(k, q) in
cases 2 ≤ k ≤ 11, 3 ≤ q ≤ 9. More information on our caps is to be found in
[16]. It has been noted earlier that these values are known to equal m2(k, q)
only when k ≤ 3 and in cases m2(4, 3) = 20, m2(5, 3) = 56 and m2(4, 4) =
41. We use label c to indicate that a complete cap is known. The following
values follow from computer constructions based on symmetry groups:

m2(4, 7) ≥ 132, m2(4, 8) ≥ 208, m2(4, 9) ≥ 212,

m2(5, 5) ≥ 186, m2(5, 8) ≥ 695.

For m2(5, 7) ≥ 434 see Subsection 3.1. The remaining entries of Table 4 are
based on caps constructed in the present paper by application of recursive
constructions. In some cases the result is not a complete cap and we used a
computer search to obtain completions. Some of the values for k ≥ 6, q > 3
follow from [3]. The following 8-ary values are obtained by application of
Theorem 2 to a 208-cap in AG(4, 8). The cap is avoided by i = 3 hyperplanes
in general position. This yields

m2(7, 8) ≥ 208 · 65 = 13, 520, m2(8, 8) ≥ 2082 = 43, 264,

m2(10, 8) ≥ 208 · 652 = 878, 800, m2(11, 8) ≥ 208265 = 2, 812, 160.

The 695−cap in PG(5, 8) possesses a tangent hyperplane. Application of
Theorem 4 produces a cap of size 695 · 65− 1 = 45, 174 in PG(8, 8).

A 2056−cap in PG(8, 4) and a 21, 399−cap in PG(8, 7) are obtained
via Theorem 4. In both cases the ovoid is one of the ingredients. In the
quaternary case the second ingredient is a 121-cap in PG(5, 4) contained in
the Glynn cap, in the other case we use a 428−cap in PG(5, 7), which is
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contained in the 434−cap from Subsection 3.1. It is in fact easy to see that
there are hyperplanes intersecting the Glynn cap in 6 points, for example
the hyperplane x1 = 0 in the terminology of Section 3. The 21, 399−cap in
PG(8, 7) was embedded in a computer-generated complete 21, 555−cap. The
2056−cap in PG(8, 4) can be embedded in a complete 2110−cap.

The sizes of quaternary caps derived from the theory in higher dimensions
are 4926 in PG(9, 4), 15, 126 in PG(10, 4) and 34, 566 in PG(11, 4). The
computer was used to generate complete extensions in the former two cases.

An application of Theorem 3 to the 186-cap in PG(5, 5) yields a 4651-
cap in PG(8, 5), which can be completed to a 4700−cap. A 16, 900-cap in
PG(9, 5) belongs to a family constructed in [3], see the last part of Section 1.
We generated an extension by 224 points.

The product of the 132−cap in PG(4, 7) and the affine part of the ovoid
yields a 6468−cap in PG(7, 7), which possesses a completion to a 6472-cap.
The caps in PG(7, 9) and in PG(10, 9) are obtained from an application of
the product construction, using a 210−cap in AG(4, 9), which was found by
a computer program. The complete 840-cap in PG(5, 9) (see [3]) has a hy-
perplane intersection of 10. Applications of Theorem 1 yield an 68, 070−cap
in PG(8, 9) and a 5, 580, 100-cap in PG(11, 9).

Finally we mention some more computer-generated caps in dimension 4
over larger fields:

m2(4, 11) ≥ 316, m2(4, 13) ≥ 388, m2(4, 16) ≥ 629, m2(4, 32) ≥ 3136.
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