
The Radical of Binary Dimensional Dual

Hyperovals

Ulrich Dempwolff
Department of Mathematics,
University of Kaiserslautern,

Kaiserslautern, Germany

Yves Edel
Department of Mathematics:

Analysis, Logic and Discrete Mathematics,
Ghent University,
Ghent, Belgium

Abstract

Let S be a dimensional dual hyperoval of rank n over F2. We introduce
and study the radical P (S), which is a subspace of the ambient space U(S)
of S invariant under the automorphism group of S. For the vast majority
of the known dimensional dual hyperovals we have P (S) = U(S). Inter-
esting is the case of proper radicals, i.e. P (S) 6= U(S). Starting point of
our investigations is a result of the second author [10, Thm. 1], [7, Thm.
3.6] (Theorem 1.2 below) which characterizes alternating dual hyperovals
by the property that S splits over P (S). This Theorem is extended by
Theorem 1.3 where we characterize dimensional dual hyperovals S with
dimU(S)−dimP (S) = rank(S)−1. Moreover we will show (Theorem 4.6)
that a proper radical implies that this dimensional dual hyperoval is a dis-
joint union of subDHOs of smaller rank. The notion of ”disjoint union
of subDHOs” has been introduced by Yoshiara [17]. Some theory on di-
mensional dual hyperovals with proper radicals is developed. Our paper
also provides some computational results on dual hyperovals of small rank
with a proper radical. These calculations indicate — though dual hyper-
ovals with a proper radical seem to be scarce — that the number of these
hyperovals is steadily growing as function of the rank.

Keywords: dimensional dual hyperoval
MSC: 51A45, 05B25

1 Introduction

Let n ≥ 2. A set S of size |S| = (qn− 1)/(q− 1) + 1 of n-dimensional subspaces
of a finite Fq-vector space is called a dual hyperoval of rank n (we will use
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in the sequel the abbreviation DHO), if for every X ∈ S and every 1-space
P ⊆ X there exists precisely one X ′ ∈ S − {X} such that X ∩ X ′ = P . The
space U(S) = 〈X | X ∈ S〉 is called the ambient space of the DHO. Often,
a DHO of rank n is viewed projectively and called a (n − 1)-dimensional dual
hyperoval. In this paper, we prefer to take the point of view of vector spaces,
and hence all dimensions will be vector space dimensions. For basic definitions
and background information on DHOs we refer to Yoshiara [16].

Definition 1.1. Let S be a DHO over F2 and X,X ′ ∈ S. Define XfX ′ as the
nontrivial vector in X ∩ X ′ if X 6= X ′ and if X = X ′ we set XfX ′ = 0. For
three members X1, X2, X3 ∈ S define

u(X1, X2, X3) = X1fX2 +X1fX3 +X2fX3

and define in the ambient space the subspace

P (S) = 〈u(X1, X2, X3) | X1, X2, X3 ∈ S〉

and call P (S) the radical of S. We call the radical proper if P (S) 6= U(S).

A DHO S is of split type or splits over Y if there exists a subspace Y ⊆ U(S)
with

U(S) = X ⊕ Y

for all X ∈ S. Edel [10, Thm. 1], [7, Thm. 3.6] gives the following geometric
characterization of alternating DHOs:

Theorem 1.2. Let S be a DHO over F2. Equivalent are:

(a) S splits over P (S).

(b) S is an alternating DHO.

An inspection of known DHOs over F2 shows, that given a DHO S over F2,
one can expect in the majority of cases that the radical is not proper. On the
other hand inspecting the known DHOs of rank 4 (see [1]) one observes that the
difference dimU(S) − dimP (S) takes all values in the range between 0 and 4
(by Lemma 2.1 this difference is bounded from above by the rank of a DHO).
Also P (S) is (obviously) invariant under the automorphism group of S. This
motivates an investigation of the radical of a DHO.

In the next Section we prove basic properties of the radical. Quotients of
the Huybrechts DHO and the Buratti-Del Fra DHO provide examples with a
proper radical as we see in Section 3. In Section 4 we define substructures
of DHOs which are in the most natural way DHOs of lower rank — so called
subDHOs — embedded in the given DHO. It turns out that the existence of
subDHOs has to do with the property that the radical is proper. Furthermore
we see that this property is the basis for Yoshiara’s work on disjoint unions of
subDHOs [17]. In Section 5 Theorem 5.1 describes the radical of bilinear DHOs.
Some consequences of this Theorem are discussed. In Section 6 we shall prove
the following:

2



Theorem 1.3. Let n ≥ 4 and S be a DHO of rank n over F2 such that
dimU(S)− dimP (S) = n− 1. Then S is a quotient of Hn or Dn.

Here Hn stands for the Huybrechts DHO of rank n and Dn stands for the
Buratti-Del Fra DHO of rank n. It is known that alternating DHOs are quotients
of Huybrechts DHOs (see [5, Lem. 2.2]). In Section 7 we present some sporadic
examples with proper radical not covered by the general examples of Section 3.

2 Properties of the radical

The radical of a DHO is a supplement of a DHO, namely;

Lemma 2.1. U(S) = X + P (S) for every X ∈ S. In particular S splits over
P (S) if dimU(S)− dimP (S) = n.

Proof. As XfX1 ∈ X we see X2fX3 = u(X,X2, X3) + XfX2 + XfX3 ∈
P (S) +X. So U(S) = 〈X ′′fX ′ | X ′′ 6= X ′〉 ⊆ X + P (S).

As an immediate corollary we obtain the following extension of Theorem 1.2:

Corollary 2.2. Let S be a DHO over F2 of rank n. Equivalent are:

(a) S splits over P (S).

(b) S is an alternating DHO.

(c) dimU(S) = dimP (S) + n.

Lemma 2.1 raises an immediate question. Suppose that the DHO is of split
type. Does the radical contain a complement? We can not answer this question
but at least for bilinear DHOs this question has a positive answer.

Let X, Y be finite dimensional F2-spaces, β : X → Hom(X,Y ) a monomor-
phism. For e ∈ X define by X(e) = {(x, xβ(e)) | x ∈ X} a subspace in
U = X ⊕ Y . If Sβ = {X(e) | x ∈ X} is a DHO in U we call Sβ bilinear. A bi-
linear DHO is alternating if eβ(e) = 0 for all e ∈ X. The mappings τe ∈ GL(U)
defined by (x, y)τe = (x, y + xβ(e)) are automorphisms of this DHO and they
form the standard translation group T = Tβ of Sβ (for more basis information
on bilinear DHOs see [7]). Note, that Y = CU (T ) = [U, T ] and that Sβ splits
over Y where CU (T ) = {u ∈ U | uτ = u, τ ∈ T} is the centralizer of T in U
and [U, T ] = 〈uτ + u | u ∈ U, τ ∈ T 〉 is the commutator of U and T .

For the computation of the radical we define the kernel function κ = κβ :
X → X by κ(0) = 0 and for 0 6= e ∈ X denote by κ(e) the generator of kerβ(e).
Note, that κ is a bijection on X by the definition of a DHO. One observes:

Lemma 2.3. Let X,Y be F2-spaces, β : X → Hom(X,Y ) be a monomorphism
which defines a bilinear DHO S = Sβ with ambient space U = X ⊕ Y . Set
Xκ = 〈κ(e) + κ(f) + κ(e + f) | 0 6= e, f ∈ X〉. Then P (S) ⊆ Xκ ⊕ Y and
P (S) contains a T -invariant complement (T the standard translation group).
In particular P (S) is proper iff Xκ is a proper subspace of X.
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Theorem 5.1 below improves this lemma significantly.

Proof. As κ(e+ f)β(e) = κ(e+ f)β(f)

X(e)fX(f) = (κ(e+ f), κ(e+ f)β(e)).

So

u(X(0), X(e), X(f)) = (κ(e) + κ(f) + κ(e+ f), κ(e+ f)β(e)) ∈ Xκ ⊕ Y.

Also u(X(h), X(e+h), X(f+h)) = u(X(0), X(e), X(f))τh ≡ u(X(0), X(e), X(f))
(mod Y ) showing P (S) ⊆ Xκ ⊕ Y . Set PY = P (S) ∩ Y and let {yi + PY | 1 ≤
i ≤ r} be a basis of Y/PY . By Lemma 2.1 there exist xi ∈ X, zi ∈ PY such that
vi = xi + yi + zi ∈ P (S). Then xi ∈ Xκ. Set K = 〈vi, PY | 1 ≤ i ≤ r〉. Then
K is T -invariant since [K,T ] ⊆ [Xκ ⊕ Y, T ] ⊆ P (S) ∩ Y = PY ⊆ K. Clearly,
dimK = dimY and X ∩ K = 0. Since K is T -invariant S splits over K. As
Y = [X,T ] Lemma 2.1 implies the last assertion.

Let S, S ′ be DHOs of rank n. A linear mapping φ : U(S) → U(S ′) is a
covering map if S ′ = {Xφ | X ∈ S}. One says that S is a cover of S ′ and
that S ′ is a quotient of S. In this situation S ′ ' S/W where W = kerφ and
S/W = {(X +W )/W | X ∈ S}. A cover is proper if φ is not an isomorphism.
DHOs which do not have a proper cover are called simply connected. For every
DHO there exists a unique simply connected cover, the universal cover (see [16,
Def. 2.10] and [4]). The behavior of the radical operator under homomorphisms
is described by:

Proposition 2.4. Let S be a DHO over F2 and W ⊆ U(S) a subspace defining
the quotient S/W in U(S/W ) = U(S)/W . Then P (S/W ) = (P (S) +W )/W .

Proof. As S/W is a DHO we have dim((X +W )∩ (X ′ +W )) = dimW + 1 for
X,X ′ ∈ S distinct. The space (X∩X ′)⊕W lies in (X+W )∩(X ′+W ) and has
the same dimension. Hence (X +W )/W ∩ (X ′+W )/W = ((X ∩X ′) +W )/W .
The assertion follows.

3 Examples with a proper radical

In this Section we consider the radical of the Buratti-Del Fra DHOs Dn and
quotients of Huybrechts DHOs Hn with a proper radical.

3.1 Buratti-Del Fra DHOs

We recall a construction of the Buratti-Del Fra DHOs. LetX = Xn = 〈e0, e1, . . . , en−1〉
be an n-dimensional F2-space and denote by S2(X) the second component of
the symmetric algebra over X (which is generated by the vectors ei · ej , i ≤ j).
Set Rn = 〈e20, e0 · ei + e2i | 0 < i < n〉 and Y = Yn = S2(X)/Rn. For u, v ∈ Vn
we will denote by u · v the homomorphic image of u · v ∈ S2(X) in Y . Define in
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Un = Xn⊕Yn the n-dimensional Buratti-Del Fra DHO by Dn = {X(e) | e ∈ X},
where X(e) = {(x, x · e) | x ∈ X}. Note, that the map

X ×X 3 (x, e) 7→ x · e ∈ Y

is bilinear and symmetric and that x · x = x · e0.

Lemma 3.1. Let Dn be the Buratti-Del Fra of rank n ≥ 3.

(a) Let n = 3. Then P (Dn) = 〈e0〉 ⊕ 〈e0 · e1, e0 · e2〉.

(b) Let n > 3. Then P (Dn) = 〈e0〉 ⊕ Y .

Proof. Set xβ(e) = x · e for x, e ∈ X and κ = κβ . Since x · x = x · e0, i.e.
xβ(x) = xβ(e0), we get κ(e) = e0 + e for e ∈ X − 〈e0〉 and therefore κ(e0) = e0
since κ is a permutation. We conclude κ(e) + κ(f) + κ(e + f) ∈ 〈e0〉 for all
e, f ∈ X and even κ(e) + κ(f) + κ(e + f) = e0 holds if e, f, e + f ∈ X − 〈e0〉.
Thus P (D) ⊆ 〈e0〉 ⊕ Y by Lemma 2.3.

Assume first n > 3. Suppose P (D) ⊂ 〈e0〉 ⊕ Y . Then dimP (D) + n =
dimU(D), i.e. D is alternating by Corollary 2.2. Hence Dn ' Hn as ambient
space of Dn and Hn are the same, a contradiction. Hence P (D) = 〈e0〉 ⊕ Y .

For n = 3 one has D3 ' H3 (cf. [7, Appendix]). Hence dimP (Dn) = 3. We
compute [〈e0〉, T ] = 〈e0 · e1, e0 · e2〉 and assertion (a) follows.

3.2 Quotients of Huybrechts DHOs

In this subsection we study quotients of Huybrechts DHOs. We recall their
definition: Let X = Xn = 〈e0, . . . , en−1〉 be a n-dimensional F2-space, Y =
Yn = ∧2(X) and U = X ⊕ Y . The Huybrechts DHO of rank n has the form

Hn = {X(e) | e ∈ X}

where
X(e) = {(x, x ∧ e) | x ∈ X},

in particular X(0) = X ⊕ 0. We like to show:

Proposition 3.2. Let n ≥ 13. For every k ∈ {0, . . . , n} there exists a subspace
W ⊆ U(Hn) such that S = Hn/W is a DHO (of rank n) and

dimU(S)− dimP (S) = k.

Lemma 3.3. Let Sn be the F2-space of skewsymmetric n × n-matrices. Let
n ≥ 13. Then Sn contains a subspace Ln such that dim Ln ≥ n and each
nontrivial matrix in Ln has rank ≥ 6.

Proof. For a fixed n denote by eij the matrix which is 1 for the position (i, j)
and whose other entries are zero. For 1 ≤ j < i ≤ n set εij = eij + eji. Then
{εij | 1 ≤ j < i ≤ n} is a basis of Sn. For 2 ≤ j ≤ n set

Sj = Sjn = 〈εik | i > k, i+ k = j + 1〉.
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Sj is the subspace in Sn whose matrices have their nontrivial entries in the
diagonal (j, 1), (j − 1, 2), . . . , (1, j). Then

dim Sj = bj/2c.

Let n ≥ j ≥ 6 and let Lj be a subspace of Sj of maximal dimension with respect
that w(T ) ≥ 3 for 0 6= T ∈ Lj . Here w(T ) is the Hamming weight of T with
respect to the basis {εj−i+1,i | 1 ≤ i ≤ bj/2c}. Let m be the minimal number
with bj/2c ≤ 2m − 1. Then

dim Lj ≥ bj/2c −m.

(Let k = bj/2c and 0 6= x1, . . . , xk ∈ Fm2 column vectors. Set H = (x1, . . . , xk)
and consider H as the control matrix of a F2-code C. Then C has dimension
≥ k −m and minimal weight ≥ 3.) Set Ln = L6

n ⊕ · · · ⊕ Lnn. Then

dim Ln ≥ 1 + 1 + 1 + 1 + 2 + 2 + 3 + 3 = 14

as dim Lj ≥ 1 for j = 6, 7, 8, 9, ≥ 2 for j = 10, 11 and ≥ 3 for j = 12, 13.
As dim Ln+1 = dim Ln + dim Ln+1

n+1 one has dim Ln ≥ n for all n ≥ 13. Let
0 6= T ∈ Ln. Write T = T6 + · · · + Tn with Tj ∈ Lj . Let j be maximal with
Tj 6= 0. Then all entries of T below the diagonal (j, 1), (j − 1, 2), . . . , (1, j) are
trivial and in this diagonal at least 6 entries are 1. Hence T has rank ≥ 6.

Proof. (of Proposition 3.2) One knows that one can identify Yn with Sn such
that an element 0 6= v ∧ w ∈ Yn is identified with an element in Sn of rank 2.
Consider the element (x, y) ∈ Xn ⊕ Yn = U(Hn). If (x, y) = (x, x ∧ e) ∈ X(e)
then rk y ≤ 2 and if (x, y) ∈ X+X ′, X,X ′ ∈ Hn then rk y ≤ 4. Assume rk y ≥ 6.
Then (x, y) lies not in X +X ′, for any pair X,X ′ ∈ Hn. Pick a subspace Ln of
Sn as in Lemma 3.3. Let y0, . . . , yn−1 ∈ Ln ⊆ Yn

.
= Sn be linear independent

elements. Set ui = (ei, yi), 0 ≤ i < n and Wk = 〈u0, . . . , uk−1〉. Then dimWk =
k, P (Hn) ∩Wk = Yn ∩Wk = 0 and (X + X ′) ∩Wk = 0 for X,X ′ ∈ Hn. So
S = Hn/Wk is a DHO by [16, Prop. 2.11] and P (S) = (P (Hn) +Wk)/Wk has
rank

(
n
2

)
. So dimU(S) − dimP (S) =

(
n+1
2

)
− k −

(
n
2

)
= n − k. Interchanging

the roles of n− k and of k we get the assertion.

Remark 3.4. (a) Let n be odd and Mn a DHO set of a bilinear orthogonal
DHO. Such DHOs exist for all odd n by [9]. Then Mn is a subspace of rank
n of Sn whose nontrivial elements have rank n − 1. So for n ≥ 7, n odd and
arguing as in the proof of Proposition 3.2 with Mn in the role of Ln we get the
assertion of Proposition 3.2 with less effort.

(b) It is not difficult for 8 ≤ n ≤ 12, n even, to find by an obvious random
search n-subspace Mn of Sn such that nontrivial elements have rank ≥ 6. So
(using (a)) the assertion of Proposition 3.2 holds even for n ≥ 7.

(c) Presumably it is easy to mimic the arguments of this Subsection to
obtain the analogue of Proposition 3.2 for the Buratti-Del Fra DHOs. In fact
computations (see Remark 7.5 below) indicate that Dn, n ≥ 5 should have for
every 0 ≤ k ≤ n− 1 quotients S with dimU(S)− dimP (S) = k.
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4 Substructures

The most straightforward definition of a substructure of a DHO is:

Definition 4.1. Let 2 ≤ n′ ≤ n and S a DHO of rank n over Fq. A DHO S ′
of rank n′ in U(S) is a subDHO of S if every space Z ′ ∈ S ′ is contained in a
subspace Z ∈ S.

Our notation corresponds to the notions of [17]. In [17, Def. 1.1] Yoshiara
defines subDAs (sub-dual arcs). A subDHO is a subDA which is even a DHO.

Keep the notation of the definition. By the definition of a DHO the space
Z which contains Z ′ is uniquely determined. We define (in accordance with the
conventions of [17])

S(S ′) as the subset of elements of S which contain members of S ′.

For a DHO S and a subspace A of U(S) define

S(A) = {Z ∈ S | dimZ ∩A > 0}

and
S[A] = {Z ′ | Z ∈ S(A)}

with
Z ′ = 〈S ∩ Z | Z 6= S ∈ S(A)〉.

Lemma 4.2. Let S be a DHO of rank n over Fq. Let X ′ ⊆ X ∈ S be a subspace
of rank n′ ≥ 2. Then there exists at most one subDHO of rank n′ that contains
X ′, namely S[X ′].

Proof. Let S ′ be a subDHO containing X ′. Then S(S ′) = {X} ∪ {Z ∈ S(S ′)−
{X} | Z ∩ X ′ 6= 0} = S(X ′). So for Z ′ ∈ S ′ we get Z ′ = {Z ′ ∩ Z ′1 | Z ′1 ∈
S ′ − {Z ′}} = {Z ∩ Z1 | Z1 ∈ S(S ′)− {Z}} ∈ S[X ′] showing the claim.

If q = 2 then Z ′ ∈ S[X ′] can be written also as

Z ′ = 〈SfZ | S ∈ S(X ′)〉

and if S[X ′] is a subDHO we can even write

Z ′ = {SfZ | S ∈ S(X ′)}.

The behavior of subDHOs under homomorphisms is described by:

Lemma 4.3. Let φ : U(S)→ U(S ′) be a covering map from the DHO S to the
quotient S ′.

(a) Let T be a subDHO of rank m of S. Then T φ = {Sφ | S ∈ T } is a
subDHO of S ′ of rank m.

(b) Let T ′ be a subDHO of rank m of S ′. Then T ′φ−1 = {Sφ−1 | S ∈ T ′} is
a subDHO of S of rank m.

7



Here Aφ−1 denotes the pre-image of the object A from the codomain of φ.
The Lemma follows immediately from the fact that the covering map is injective
on the members of S.

Example 4.4. Consider the Huybrechts DHO Hn = {X(e) | e ∈ X} of rank
n, where X(e) = {(x, x ∧ e) | x ∈ X}. Let X ′ = 〈e0, . . . , ek−1〉 and X ′(0) =
{(x, 0) | x ∈ X ′}. Then

Hn(X ′(0)) = {X(e) | e ∈ X ′}.

Set X ′(e) = {X(e)fZ | Z ∈ Hn(X ′(0))}. Then X ′(e) = {(x, x ∧ e) | x ∈ X ′}
and S ′ = {X ′(e) | X(e) ∈ Hn(X ′(0))} is isomorphic to Hk. As Aut(Hn) acts
doubly transitive on Hn and the stabilizer of an X ∈ Hn acts transitively on
the set of k-spaces we can state:

(*) Let X ∈ Hn and X ′ a subspace of X of dimension dimX ′ = k ≥ 2.
Then Hn[X ′] is subDHO of Hn isomorphic to Hk.

Let S be a quotient of Hn. By Lemma 4.3 for every subspace X ′ ⊆ X ∈ S
the set S[X ′] is a subDHO of rank dimX ′.

We take from Yoshiara [17, Def. 1.1] the following definition.

Definition 4.5. Let S be a DHO over F2 with subDHOs T1, . . . , TM of rank
m. We say that S is the disjoint union of T1, . . . , TM if

S = S(T1) ∪ · · · ∪ S(TM )

is a partition of S. We write in this case

S = T1 t · · · t TM .

It is convenient for the next result to define a subDHO of rank 1 as a 1-space
of the form XfZ, X,Z ∈ S, X 6= Z.

Theorem 4.6. Let S be a DHO over F2 of rank n. Let Q be a subspace of U(S)
which contains P (S) such that

m = n+ dimQ− dimU(S) > 0.

The following hold:

(a) There exist M = 2n−m subDHOs T1, . . . , TM of rank m such that

S = T1 t · · · t TM .

(b) For all 1 ≤ j ≤M we have

Tj = {X ∩Q | X ∈ S(Tj)}.
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(c) Suppose X ′ ∈ T1 is contained in X. Then the coset decomposition of X
modulo X ′ can be written in the form

X =

M⋃
i=1

X ′ + vi,

such that for all 1 ≤ j ≤M we have

{XfZ | Z ∈ S(Tj)} = X ′ + vj .

Proof. Let X be in S. By Lemma 2.1 U(S) = Q+X. Hence

m = dimX ∩Q = dimX + dimQ− dimU(S) = n+ dimQ− dimU(S).

We define the symmetric relation ∼ on S and write X ∼ Z if X = Z or if
X 6= Z and XfZ ⊆ Q. Note, that S(X ∩Q) = {Z ∈ S | X ∼ Z}.

Claim: ∼ is an equivalence relation on S.

If m = 1 then for any X there exists precisely one X ′ with X∩Q = 〈X∩X ′〉,
i.e. the claim holds.

So assume m > 1. It is enough to show that X1 ∼ X2 for X1, X2 ∈ S(X∩Q).
We know XfX1, XfX2 ∈ Q. Therefore

X1fX2 = u(X,X1, X2) +XfX1 +XfX2 ∈ Q

as P (S) ⊆ Q. Thus X1 ∼ X2 and the claim follows.
Moreover, every equivalence class has the form S(X ∩ Q) where X is any

member from this class. We have seen X ∩ Q = {XfZ | Z ∈ S(X ∩ Q)}. So
S[X ∩Q] is a collection of m-spaces. Since S is a DHO and by the definition of
∼ we conclude that T = S[X ∩Q] is a subDHO of rank m. Choose X1, . . . , XM

such that
S = S(X1 ∩Q) ∪ · · · ∪ S(XM ∩Q)

is the partition into the equivalence classes and set Ti = S[Xi ∩ Q]. Then
2m = |Ti| = |S(Xi ∩Q)| showing M = 2n−m. Assertions (a) and (b) follow.

Let X ′ = X ∩Q ∈ T1, X ∈ S(T1) and pick Z1, Z2 ∈ S(Tj). Then

XfZ1 +XfZ2 = u(X,Z1, Z2) + Z1fZ2 ∈ X ∩Q = X ′.

So XfZ1, XfZ2 lie in the same coset modulo X ′. Hence

{XfZ | Z ∈ S(Tj)} = X ′ + vj ,

for some vj ∈ X. Assertion (c) holds too.

Example 4.7. Let n ≥ 3, V be a n-dimensional F2-space and U = S2(V ) the
symmetric square of V . Define in U the n-spaces X(0) = {x2 | x ∈ V } and
X(e) = {x · e | x ∈ V } for 0 6= e ∈ V . Then V = Vn = {X(e) | e ∈ V } is a
DHO, the Veronesean DHO of rank n [16, Sec. 5.2].
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Observe that X(0)fX(e) = e2 and X(e)fX(f) = e · f for 0 6= e, f ∈ V . Let
V ′ ⊂ V be a (n − 1)-space, X ′ = {x2 | x ∈ V ′}, then this observation shows
that the set V ′ = V[X ′] is a subDHO isomorphic to Vn−1. However V is not the
disjoint union of V ′ with an other subDHO:

Otherwise if T is such a subDHO then V(Z ′) = {X(e) | e ∈ V − V ′} for
Z ′ ∈ T . Say Z ′ ⊆ X(e0), e0 ∈ V − V ′. Then Z ′ = X(e0) − {X(e0)fX(e) |
e ∈ V ′} = {X(e0)fX(e) | e ∈ V − V ′}. However {e0 · e | e ∈ V − V ′, e 6= e0}
generates X(e0) which is an n-space. This contradiction shows our claim.

For n ≥ 4 Taniguchi defines over the n-space V a distortion Tn of the Verone-
sean DHO Vn, the Taniguchi DHO of rank n (see for instance [15]). Certain
(n− 1)-spaces V ′ of V define subDHOs isomorphic to Tn−1 which are again not
members of a disjoint union of subDHOs of Tn. We leave the somewhat more
elaborate verification to the reader.

4.1 Hyperplanes and subDHOs

The next Proposition is a slight generalization of [17, Prop. 1.2(2)].

Proposition 4.8. Let S be a DHO over F2 of rank n and T a subDHO of rank
n− 1. The following hold:

(a) For every Z ∈ S − S(T ) we have U(S) = U(T ) + Z.

(b) For X ′ ∈ T and Z ∈ S − S(T ) we have X ′ ∩ Z = 0.

Proof. Set Q = U(T ) + Z. Let X ′ ∈ T and X ′ ⊆ X ∈ S(T ). Then XfZ ∈
X −X ′, i.e. X = X ′ ⊕ (X ∩ Z) ⊆ Q, i.e. U(S(T )) ⊆ Q. For Y ∈ S − S(T ) set
Ȳ = {Y ′fY | Y ′ ∈ S − S(T )}. As S = S(T ) ∪ (S − S(T )) is a partition into
2n−1-sets we get |Ȳ | = 2n−1. And therefore Y0 = {YfX | X ∈ S(T )} = Y − Ȳ
is a set of size 2n−1 of vectors 6= 0. In particular Y = 〈Y0〉. On the other hand
Y0 ⊂ U(S(T )) ⊆ Q showing Y ⊆ Q. We conclude Q = U(S) and (a) follows.
Assertion (b) is trivial.

Definition 4.9. Let S be a DHO over F2 of rank n. Assume H is a hyperplane
of U(S) and T a subDHO of rank n − 1. We say that T is induced by H or
induced by a hyperplane if T = {X ∩H | X ∈ S(T )} and say that H induces a
subDHO if S contains a 2n−1-set S ′ such that {X ∩H | X ∈ S ′} is a subDHO
of rank n− 1.

Let X, Y be finite dimensional F2-spaces, β : X → Hom(X,Y ) be a
monomorphism which defines a bilinear DHO Sβ in U = X ⊕ Y . Define
βo : X → Hom(X,Y ) by eβo(x) = xβ(e), x, e ∈ X. Then βo defines the
opposite DHO Sβo in U = X ⊕ Y (see [3, Sec. 3]).

Example 4.10. Let X,Y be finite dimensional F2-spaces, dimX = n and let
β : X → Hom(X,Y ) be a monomorphism which defines a bilinear DHO Sβ . Set
X = F2 ⊕X and Y = X ⊕ Y . For e ∈ X define two subspaces of X ⊕ Y by

X(0, e) = {(b, be, be+ x, (be+ x)β(e)) | (b, x) ∈ X},
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X(1, e) = {(b, be+ x, be, (be+ x)βo(e)) | (b, x) ∈ X},

and set Sβ = {X(a, e) | (a, e) ∈ X}. The set Sβ is a DHO of rank n + 1 in
X ⊕ Y , the extension of the bilinear DHO Sβ (see [7] and [12]).

Obviously the hyperplane H = 0⊕X⊕Y induces the subDHOs Sβ ' Tβ ⊆ Y
and Sβo ' Tβo ⊆ 0⊕X ⊕ 0⊕ Y and Sβ = Tβ t Tβo .

Lemma 4.11. Let S be a DHO of rank n over F2 and let T be a subDHO of
rank n− 1. Suppose that there exists Z ∈ S − S(T ) such that:

(i) There is a hyperplane Z0 of Z such that XfZ ∈ Z−Z0 for all X ∈ S(T ).

(ii) U(T ) + Z0 is a proper subspace of U(S).

Then T is induced by a hyperplane.

Proof. By Proposition 4.8 one has U(T ) + Z0 ⊂ U(S) = U(T ) + Z. So H =
U(T ) + Z0 is a hyperplane of U(S) and Z − Z0 = {ZfX | X ∈ S(T )} ⊂
U(S)−H. This implies T = {H ∩X | X ∈ S(T )}.

Proposition 4.12. Let S be a DHO of rank n over F2 and let T be a subDHO
of rank n− 1 that is induced by the hyperplane H of U(S). Set S ′ = S − S(T ).
The following hold:

(a) Let X be in S(T ) and Z in S ′. Then XfZ ∈ U(S)−H.

(b) T ′ = {Z ∩H | Z ∈ S ′} is a subDHO of rank n− 1.

(c) P (S) ⊆ H.

Proof. Let X ′ ∈ T be contained in X ∈ S(T ) and Z ∈ S ′. Then X ′ = X ∩H
and X = X ′ ∪ (X ′ + XfZ) is the coset decomposition of X modulo X ′. In
particular XfZ ∈ X − (X ∩H), i.e. (a) holds.

The set Z̄ = {ZfX | X ∈ S(T )} is a set of nontrivial vectors of size 2n−1

which lies in U(S) − H, in particular Z = 〈Z̄〉. Hence {ZfZ ′ | Z ′ ∈ S ′} =
Z − Z̄ ⊂ H. We deduce

Z ∩H = {ZfZ ′ | Z ′ ∈ S ′}.

Assertion (b) follows.
By (b) U(T ) + U(T ′) ⊆ H. This shows u(X,Y, Z) ∈ H if {X,Y, Z} lies

in S(T ) or S(T ′). Suppose now X,Y ∈ S(T ), Z ∈ S(T ′). Then XfY ∈ H
and XfZ, YfZ ∈ U(S) − H. Since H is a hyperplane: XfZ + YfZ ∈ H.
So again u(X,Y, Z) ∈ H. Arguing by symmetry we conclude that assertion (c)
holds.

Corollary 4.13. Let S be a DHO over F2 and let H be the set of hyperplanes
which induce a subDHO. Then

P (S) =
⋂
H∈H

H.
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Proof. By assertion (c) of Proposition 4.12 P (S) ⊆ H for every H ∈ H. So
P (S) ⊆

⋂
H∈HH.

Let H′ be the set of hyperplanes containing P (S). Then P (S) =
⋂
K∈H′ K.

By assertion (b) of Theorem 4.6 every K ∈ H′ (take K in the role of Q) lies in
H. Hence

⋂
H∈HH ⊆ P (S) and the claim follows.

Corollary 4.14. Let S be a DHO over F2 of rank n and T be a subDHO of
rank n− 1. Equivalent are:

(a) T is induced by a hyperplane.

(b) H = P (S) + U(T ) is a proper subspace (and then even a hyperplane).

Proof. Let T be induced by H. Then P (S) ⊆ H by Proposition 4.12. By
Lemma 2.1 U(S) = P (S) + X for X ∈ S(T ) and by Theorem 4.6 T = S[X ′],
X ′ = X ∩H. So P (S) +X ′ ⊆ P (S) + U(T ) ⊆ H ⊂ P (S) +X = U(S). Hence
H = P (S) + U(T ).

Now assume that H is a proper subspace of U(S). Suppose X ′ ∈ T , X ′ ⊂
X ∈ S. By Lemma 2.1 then P (S) + X ′ ⊆ H has codimension ≤ 1 in U(S) =
P (S) +X. So H is a hyperplane which induces T .

Remark 4.15. Suppose the binary DHO S = T1 t T2 of rank n is the disjoint
union of two subDHOs of rank n− 1.

(a) With Z ∈ S(T2) and T = T1 assumption (i) of Lemma 4.11 is fulfilled. So
assumption (ii) holds too, iff P (S) is a proper subspace of U(S). The assump-
tions of Yoshiara [17, Theorem 1.3] imply dimU(T1) + n = dimU(S), which
implies (ii) too. Thus the assumptions of Yoshiaras Theorem force that the
radical is a proper subspace of the ambient space.

(b) Let W ⊂ U(S) be a subspace such that S/W is a quotient of S and
H be a hyperplane. If W 6⊆ H, then U(S/W ) = U(T /W ) + (Z0 + W )/W for
Z ∈ S and Z0 = Z ∩H (see Lemma 4.11) but still S/W = T1/W tT2/W holds
although Ti/W is not induced by a hyperplane. By Proposition 3.2 there are
many quotients of Huybrechts DHOs with this property.

DHOs which are disjoint unions of proper subDHOs and which have not a
proper radical (as in (b) of the preceding Remark) are indeed always proper
quotients:

Corollary 4.16. Let S be a simply connected DHO over F2 of rank n which is
the disjoint union of subDHOs T1 and T2 of rank n − 1. Then T1 and T2 are
hyperplane-induced.

Proof. Let U = U(S)⊕ F2. For X ∈ S we define a set X̃ ⊆ U by

X̃ = X̄ + {x+ 1 | x ∈ X − X̄}

when X ∈ S lies in S(Ti) and X̄ ∈ Ti. One checks that X̃ is a F2-space with
the same dimension as X. Furthermore, since XfX ′ ∈ X − X̄ for X ∈ S(T1)
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and X ′ ∈ S(T2) we see that S̃ = {X̃ | X ∈ S} is a DHO in U . Define an
epimorphism φ : U → U(S) by (x + α)φ = x for x ∈ X, α ∈ F2. We observe
(X̃fX̃ ′)φ = XfX ′. So φ is a covering map.

Suppose that T1 is not hyperplane-induced. Assumption (i) of Lemma 4.11
holds as S = T1tT2. Hence (ii) of Lemma 4.11 is violated, i.e. U(S) = U(T1)+Z̄
for some Z ∈ S(T2). Therefore U(S) ⊆ U(S̃). But as X̃ 6⊆ U(S) we get
U = U(S̃). So S̃ is a proper cover of S, a contradiction.

Remark 4.17. The Veronesean DHO Vn and Tn are both simply connected
and their radical coincides with the ambient space. Corollary 4.16 gives an
immediate (non-computational) explanation for the claims in Example 4.7.

5 The radical of bilinear DHOs

The next Theorem improves Lemma 2.3. Afterwards we discuss consequences
of this Theorem.

Theorem 5.1. Let X,Y be F2-spaces, β : X → Hom(X,Y ) be a monomorphism
which defines a bilinear DHO S = Sβ of rank n ≥ 4 with ambient space U =
X⊕Y . Set Xκ = 〈κ(e)+κ(f)+κ(e+f) | 0 6= e, f ∈ X〉. Then P (S) = Xκ⊕Y .

Proof. We prove the Theorem by induction on the rank. Basis for induction is
n = 4. The bilinear DHOs of rank 4 are classified in [1]. The inspection of these
examples shows that the Theorem holds for n = 4.

n ⇒ n + 1: Let S = Sβ be a bilinear DHO of rank n + 1 > 4. Set P =
P (S), U = U(S) and let T be the standard translation group. By the proof of
Lemma 2.3 it suffices to show that Y ⊆ P . If U = P + Y then (as CU (T ) = Y )

Y = [U, T ] = [P + Y, T ] = [P, T ] ⊆ P

and we are done.
So assume P + Y 6= U . Hence there exists a hyperplane H of U which

contains P + Y . By Proposition 4.12 H induces two subDHOs T0 and T1 (of
rank n) such that S = T0 t T1. Since Y ⊆ H this hyperplane is invariant under
T . In particular T contains a subgroup T0 of index 2 which fixes S(T0) and
S(T1) and which acts regularly on both sets. This implies that T0 and T1 are
bilinear and T0 induces on both DHOs a translation group. Let τ0 ∈ T − T0.
Then τ0 interchanges S(T0) and S(T1) and fixes XfX ′, X ∈ S(T0) and X ′ =
Xτ0 ∈ S(T1). By Proposition 4.8 H = (X ′ ∩H) + U(T0) and U = XfX ′ ⊕H.
As CU (τ0) ∩X = XfX ′ we have |YD| = |X ∩H| for YD = [X, τ0] ⊆ Y and

(X ∩H)⊕ (X ′ ∩H) = (X ∩H)⊕ YD = (X ′ ∩H)⊕ YD.

Set YP = Y ∩ P . By induction Yi = [U(Ti), T0] ⊆ YP for i = 0, 1. So

H = (X ′ ∩H) + U(T0) = (X ′ ∩H) + (X ∩H) + Y0 = (X ∩H) + YD + YP .
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In particular Y = YD + YP as H = XH ⊕ Y where XH = X ∩H.
We now introduce coordinates for U . Set 〈e0〉 = XfX ′. We choose a

basis {e1, . . . en} of XH . Then there exist yi ∈ Y (even yi ∈ YD) such that
e′i = eiτ0 = ei + yi and that Y = YC ⊕ YP where YC = 〈y1, . . . , yd〉 and
{yd+1, . . . , yn} ⊂ YP where YD ∩ YP = 〈yd+1, . . . , yn〉. We claim d = 0. Then
Y = YP and we are done.

So assume d ≥ 1. There exist yn+1, . . . , ym ∈ YP such that

{e0, e1, . . . , en, y1, . . . , yd, yd+1, . . . , ym}

is a basis of U . In particular

U = 〈e0〉 ⊕XC ⊕XP ⊕ YC ⊕ YP

with XC = 〈e1, . . . , ed〉, XP = 〈ed+1, . . . , en〉, YC = 〈y1, . . . , yd〉. We describe
therefore the elements u in U by tuples u = (b, xC , xP , yC , yP ) where

u = be0 +

d∑
i=1

xiei +

n∑
i=d+1

xiei +

d∑
i=1

ziyi + yP

where xC = (x1, . . . , xd) ∈ Fd2, xP = (xd+1, . . . , xn) ∈ Fn−d2 , yC = (z1, . . . , zd) ∈
Fd2 and where we identify yP ∈ YP with (zd+1, . . . , zm) ∈ Fk2 if yP =

∑m
d+1 ziyi

and m = d + k. The elements in X have the form (b, xC , xP , 0, 0) with b ∈ F2,
xC ∈ Fd2, xP ∈ Fn−d2 and the elements in X ′ the form (b, xC , xP , xC , xP ).

We express β(e), e ∈ XH with respect to the given basis:

β(e) =

 a(e) c(e)
0 A(e)
0 B(e)

 where βXH
(e) =

(
0 A(e)
0 B(e)

)

with a(e) ∈ Fd2, c(e) ∈ Fk2 , A(e) ∈ Fd×k2 and B(e) ∈ F(n−d)×k
2 . A typical element

in X(e) = Xτe, e ∈ XH has the form

(b, xC , xP , ba(e), ∗) = (b, xC , xP , ba(e), bc(e) + xCA(e) + xPB(e)).

We compute for 0 6= e ∈ XH the elements XfX(e) and X ′fX(e). We get
XfX(e) = 〈(0, 0, κ(e), 0, 0)〉 and

X ′fX(e) = 〈(1, a(e), ∗, a(e), ∗)〉.

Since X ′ − H = {X ′fZ | Z ∈ S(T0)} = {X ′fX(e) | e ∈ XH} we see that
a : XH → YC is an epimorphism. Moreover

u = u(X,X ′, X(e)) = (0, a(e), ∗, a(e), ∗) ∈ P.

Since P is invariant under τ0 we have

(0, 0, 0, a(e), ∗) = [u, τ0] ∈ YP .

As a is an epimorphism we conclude Y ⊆ P , a contradiction. So d = 0 and the
proof is complete.
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Remark 5.2. Lemma 3.1 (a) shows that the assumption n ≥ 4 in Theorem 5.1
is necessary.

Proposition 5.3. Let X,Y be F2-spaces, β : X → Hom(X,Y ) be a monomor-
phism which defines a bilinear DHO S = Sβ with ambient space U = X ⊕ Y .
Denote by κo the kernel function of the opposite DHO. Then dimXκ = dimXκo

and
dimP (Sβ) = dimP (Sβo).

Proof. We have κ(x) + κ(x′) ≡ κ(x + x′) (mod Xκ) for all x, x′ ∈ X and by
induction ∑̀

i=1

κ(xi) ≡ κ(
∑̀
i=1

xi) (mod Xκ)

for xi ∈ X. Set
D = 〈(x, κ(x)) | x ∈ X〉 ⊆ X ⊕X

and assume dimX = n.

Claim: dimD = n+ dimXκ.

Let π : D → X the projection on X ⊕ 0. As (0, κ(e) + κ(e) + κ(e + f)) =
(e + f + (e + f), κ(e) + κ(e) + κ(e + f)) we see 0 ⊕ Xκ ⊆ D ∩ kerπ. Let

(
∑`
i=1 xi,

∑`
i=1 κ(xi)) be an element in kerπ. Then

∑
i xi = 0, so that

(
∑̀
i=1

xi,
∑̀
i=1

κ(xi)) ≡ (0, κ(
∑̀
i=1

xi)) ≡ 0 (mod 0⊕Xκ),

i.e.
∑`
i=1 κ(xi) ∈ Xκ and the claim follows.

By definition of the opposite DHO we have κ−1 = κo. So D = 〈(x, κ(x)) |
x ∈ X〉 = 〈(κo(x), κo(κ(x))) | x ∈ X〉 = 〈(κo(x), x) | x ∈ X〉 and by symmetry
dimXκo + n = dim〈(κo(x), x) | x ∈ X〉. So dimXκo = dimXκ. The second
assertion is a consequence of Theorem 5.1.

Let S be a DHO of rank n with an ambient space U = U(S) of rank 2n.
Denote by U∗ the dual space of U and for a subspace W ⊆ U we denote by
W t ⊆ U∗ the space of functionals which vanish on W . Then St = {Xt | X ∈ S}
is a set of n-spaces in V ∗. If St is a DHO too we call S a doubly dual dimensional
hyperoval or DDHO for short (see [3]).

We might ask the question if for a DDHO S the spaces P (S) and P (St) have
the same rank. The following example shows that this question has a negative
answer even for the special case of bilinear DDHOs.

Example 5.4. (DHOs of Yoshiara [16, Sec. 5.5]) Let F = F2n and σ be a
generator of Gal(F : F2), and let φ be an o-polynomial on F . For e ∈ F define
X(e) = {(x, xσe+xφ(e)) | x ∈ F} then S = Snσ,φ = {X(e) | e ∈ F} is a DHO in
F × F . If φ is a power function Aut(S) contains a cyclic group C such that C
fixes X = X(0) and C acts transitively on X − {0} (see [13, Thm. 1.1]). Then
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X ∩P (S) is a C-invariant space. So either X ∩P (S) = 0 so that by Lemma 2.1
and Corollary 2.2 S is alternating (in this case σ = φ) or X ⊆ P (S) and hence
P (S) = U(S) by Lemma 2.1.

Consider a bilinear DHO Yoshiara DHO S = Snσ,φ; in this case φ is a genera-

tor of Gal(F : F2) too and S = Sβ with xβ(e) = xeφ +xσe. Define a symplectic
form A : F × F → F2 by A(x, y) = T(xy) (here T : F → F2 is the absolute
trace on F ). Then St is isomorphic to Sβ∗ where the operator β∗(e) is adjoint
to β(e) with respect to A (so A(x, yβ(e)) = A(xβ∗(e), y)), see [3, Sec. 3]). A
computation shows that S is a DDHO only if n is odd and that Sβ∗ ' Snσ◦φ,φ−1 .

So if S = Snσ,σ is alternating then St ' Snσ2,σ−1 is not alternating if σ3 6= 1
and

dimP (S) = n whereas dimP (St) = 2n.

Theorem 5.1 allows a concrete description of the radical of extensions of
bilinear DHOs (see Example 4.10).

Proposition 5.5. Let X,Y be F2-spaces, β : X → Hom(X,Y ) be a monomor-
phism which defines a bilinear DHO S = Sβ with ambient space U = X ⊕ Y .
Let S̄ ⊆ F2 ⊕X ⊕X ⊕ Y be the extension of S.

(a) Set D = 〈(0, e, κ(e), 0) | e ∈ X〉. Then

P (S̄) = D ⊕ (0⊕ 0⊕ 0⊕ Y ).

(b) dimU(S̄)− dimP (S̄) = dimU(S)− dimP (S) + 1.

Proof. We use the description of the extension S̄ of S from Example 4.10. The
automorphism group of S̄ contains an elementary abelian group N = 〈n1,e, n0,e |
e ∈ X〉, the extension group, which is generated by the operators

n1,e =


1 e

1
1 β(e)

1

 and n0,e =


1 e

1 βo(e)
1

1

 .

Set P = {(0, 0, x, y) | (x, y) ∈ P (Sβ)} and P o = {(0, x, 0, y) | (x, y) ∈ P (Sβo)}.
Any u(X1, X2, X3) ∈ P (S̄) is conjugate under N to an element of the form
u(X(b, 0), X(b, e), X(b, f)) or u(X(0, 0), X(1, 0), X(b, e)), b = 0, 1.

Elements of the first kind lie in P or P o and by Theorem 5.1 and Proposi-
tion 5.3 we have even P = 0⊕ 0⊕Xκ ⊕ Y and P o = 0⊕Xκo ⊕ 0⊕ Y .

Elements of the second type have the shape (0, κo(e), e, 0) or (0, e, κ(e), 0).
Note that κ is a bijection on X and κo = κ−1, so that (0, κo(e), e, 0) =
(0, f, κ(f), 0) with f = κo(e). So the elements of the second type generate

D = 〈(0, e, κ(e), 0) | e ∈ X〉.

As we have seen before the conjugates of P + P o +D under N generate P (S̄).
Since [0⊕X ⊕X ⊕ Y,N ] ⊆ 0⊕ 0⊕ 0⊕ Y we get P (S̄) = P + P o +D. By the
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proof of Proposition 5.3 P = 0 ⊕ 0 ⊕ Xκ ⊕ Y ⊆ D ⊕ (0 ⊕ 0 ⊕ 0 ⊕ Y ) and by
symmetry P o ⊆ D ⊕ (0⊕ 0⊕ 0⊕ Y ) holds too. Assertion (a) follows.

In particular 0 ⊕ 0 ⊕ 0 ⊕ Y ⊆ P (S̄) ⊆ 0 ⊕ X ⊕ X ⊕ Y = U1. Set W =
U1/(0⊕ 0⊕ 0⊕ Y ) and identify W in the obvious way with X ⊕X, and WD =
P (S̄)/(0 ⊕ 0 ⊕ 0 ⊕ Y ) with 〈(e, κ(e)) | e ∈ X〉. The proof of Proposition 5.3
shows

dimWD = n+ dimXκ.

So dimU1−dimP (S̄) = dimW−dimWD = n−dimXκ = dimU(S)−dimP (S).
Assertion (b) follows.

6 Proof Theorem 1.3

A necessary step in the proof of Theorem 1.3 is the identification of quotients
of the Huybrechts and Buratti-Del Fra DHOs. This will be achieved by using
certain addition formulas of Taniguchi and Yoshiara (see [14] and [15]). For our
applications it is convenient to present these in a slightly modified form.

6.1 Addition formulas

Definition 6.1. Let V,W be finite dimensional F2-spaces dimV ≥ 2. We call
a mapping f : V × V →W symmetric if for all s, t ∈ V

f(s, t) = f(t, s) and f(s, s) = 0

holds. We say that f is symmetric of type (H) if

f(s, t1) + f(s, t2) = f(s, s+ t1 + t2)

holds for all s, t1, t2 ∈ V .
We say that f is symmetric of type (D) if there exist 0 6= e0 ∈ V such that

f(s, t1) + f(s, t2) = f(s, s+ t1 + t2 + α(s, t1, t2)e0)

for all s, t1, t2 ∈ V . Here α is defined by α(x, y, z) = ξ(x+y)+ξ(y+z)+ξ(z+x)
where ξ : V → F2 is the characteristic function of V ′ = V − 〈e0〉.

Lemma 6.2. Let f be symmetric of type (H). Let {e1, . . . , en} be a basis of V .
Set B = {0, ei | 1 ≤ i ≤ n} with the obvious lexicographic order. Then for each
(s, t) ∈ V × V there exist elements aw,w′(s, t) ∈ F2, w,w′ ∈ B depending only
on the choice of the basis of V (but not on f) such that

f(s, t) =
∑

w,w′∈B, w<w′
aw,w′(s, t)f(w,w′).

Proof. For s = 0 the function f is additive in the second argument, i.e. f(0, s) =∑
i sif(0, ei) for s =

∑
siei. The assertion holds for s = 0.
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We prove the claim by induction on w(s) +w(t) where w(s) is the Hamming
weight of s. For J ⊆ {1, . . . , n} and j0 ∈ J condition (H) shows

f(s,
∑
j∈J

ej) = f(s, 0) + f(s, ej0) + f(s,
∑

j∈J−{j0}

ej).

By the case s = 0 and by symmetry the term f(s, 0) can be expressed as a
linear combination of some f(0, ei). Induction on w(s) + w(t) shows that the
two other terms on the RHS can be expressed by elements of the form f(0, ei)
and f(ei, ej) (with i < j). The assertion follows.

Let Hn the Huybrechts DHO of rank n In U = U(Hn) = X ⊕ Y , X =
〈e0, e1, . . . , en−1〉, Y = ∧2(X) as described at the beginning of Subsection 3.2.
Identifying X with X ⊕ 0 we see XfX(s) = s and X(s)fX(t) = (s+ t, s ∧ t).
Define h : X ×X → U by h(s, t) = X(s)fX(t) = (s+ t, s ∧ t). Then

h(s, t1) + h(s, t2) = (t1 + t2, s ∧ (t1 + t2)) = h(s, s+ t1 + t2).

So h is symmetric of type (H). The following characterization of quotients of
Huybrechts DHOs is implicitly contained in [14] and [15] but for convenience
we indicate a verification along the lines of [14, Prop. 1].

Proposition 6.3. Let S = {H(s) | s ∈ X}, X = 〈e0, e1, . . . , en−1〉, be a DHO
of rank n over F2. For s, t ∈ X set b(s, t) = H(s)fH(t). Suppose that b is
symmetric of type (H). Then S is a quotient of Hn.

Proof. (Sketch) Set B = {0, ei | 1 ≤ i ≤ n} with the obvious lexicographic
order. Then the b(w,w′), w,w′ ∈ B, w < w′ form a basis of U . By Lemma 6.2
for s, t ∈ V0 there exist aw,w′(s, t) ∈ F2 such that for the mapping f = b as well
for the mapping f = h the equation

f(s, t) =
∑

w,w′∈B, w<w′
aw,w′(s, t)f(w,w′)

holds. So if we define a linear operator φ : U → U(S) by h(w,w′)φ = b(w,w′),
w,w′ ∈ B, we have h(s, t)φ = b(s, t). Hence X(s)φ = H(s) and φ maps Hn onto
S.

Proposition 1 of [14] covers the analogous result for quotients of the Buratti-
Del Fra DHOs

Proposition 6.4. Let S = {X(s) | s ∈ V } be a DHO of rank n over F2

whose elements are indexed by the elements of V , dimV = n. For s, t ∈ V0 set
d(s, t) = X(s)fX(t). Suppose that d is symmetric of type (D). Then S is a
quotient of Dn.

These addition formulas can be derived in a fashion that is independent of
the concrete model describing Hn or Dn:
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Lemma 6.5. Let H = Hn the Huybrechts DHO of rank n and U the ambient
space. Let Z ∈ H. For W ∈ H define W = Z(w) if WfZ = w and define
hZ : Z × Z → U by hZ(w,w′) = Z(w)fZ(w′). Then hZ is symmetric of type
(H).

Proof. Define the Huybrechts DHO with X = X(0) = 〈e0, e1, . . . , en−1〉, as
usual. Choose Z = X. Then we have seen that h = hX fulfills the assertion
of the Lemma. Let φ be an automorphism of H such that Xφ = Z. Suppose
XfW = w and XfW ′ = w′. Then ZfWφ = wφ and ZfW ′φ = w′φ. There-
fore hZ(wφ,w′φ) = (WfW ′)φ = h(w,w′)φ. So hZ is symmetric of type (H).
Since the automorphism group acts transitively on H the assertion holds for an
arbitrary choice of Z.

Lemma 6.6. Let D = Dn the Buratti-Del Fra DHO of rank n ≥ 4 and U the
ambient space. Let Z ∈ D. Let P (D) ∩ Z = 〈e0〉 and let ξ : Z → F2 be the
characteristic function of Z − 〈e0〉. For W ∈ D set Z = Z(w) where w =
ZfW + ξ(ZfW + e0)e0. Define dZ : Z ×Z → U by dZ(w,w′) = Z(w)fZ(w′).
Then dZ is symmetric of type (D).

Proof. With the representation of D displayed in Subsection 3.1 we compute
d(s, t) = X(s)fX(s) = (s + t + ξ(s + t)e0, (s+ t+ ξ(s+ t)e0) · s) which shows
that d = dX (forX = X(0)) is symmetric of type (D). Let φ be an automorphism
of D such that Xφ = Z. As P (D) is invariant under φ we get Z ∩P (D) = 〈e0φ〉
and ξX(w) = ξZ(wφ) (the subscript indicates the domain of the function ξ).
This implies dZ(wφ,w′φ) = d(w,w′)φ. So dZ is symmetric of type (D). Since the
automorphism group acts transitively on D the assertion holds for an arbitrary
choice of Z.

Remark 6.7. A covering map f : S ′ → S is injective on the elements contained
in the members of S ′. So the assertion of Lemma 6.5 holds for every quotient
of Hn. By the same token the assertion of Lemma 6.6 holds for every quotient
S of Dn with dimU(S)− dimP (S) = n− 1.

Lemma 6.8. Let n ≥ 4 and S be a quotient of Dn such that dimU(S) −
dimP (S) = n−1. Let W ⊂ X ∈ S be a subspace of rank 3 such that W∩P (S) =
0. Then S[W ] is not a subDHO.

Proof. Assume first S = Dn and choose W = 〈e1, e2, e3〉 ⊂ X(0). A direct
computation shows that the claim holds in this special case. One knows that
the stabilizer H of X(0) in Aut(S) is isomorphic to the stabilizer of 〈e0〉 in
GL(X(0)) and H induces the natural action on X(0). So H is transitive on
the set of 3-spaces in X(0) which do not contain 〈e0〉. So the assertion holds
with respect all such 3-spaces. The members of S are conjugated under the
automorphism group. So the assertion of the Lemma holds for S = Dn. But
then the assertion holds even for proper quotients S of Dn provided dimU(S)−
dimP (S) = n− 1.
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6.2 The case n = 4

The proof of Theorem 1.3 proceeds by induction on the rank n. The basis n = 4
is dealt with by computer calculation.

Let S be a DHO over F2 of rank 4 such that

dimU(S) ≥ dimP (S) + 3.

The binary DHOs of rank 4 and whose ambient space has rank ≤ 8 are clas-
sified in [1]. For dimU(S) = 7, there is precisely one DHO with dimU(S) −
dimP (S) ≥ 3, namely the DHO with the ID-number 1 in [1, Table 1]. This
DHO is a quotient of D4 (see [1, Subsec. 4.3]). For dimU(S) = 8, there are
precisely two DHOs of with dimU(S) − dimP (S) ≥ 3, namely Id-numbers 1
and 3 of [1, Table 1] which are a quotient of H4 and D4 respectively (see [1,
Subsec. 4.3]).

So assume now dimU(S) ≥ 9. Let Q be a subspace of codimension 1 in
U = U(S) which contains P = P (S). By Theorem 4.6

S = T1 t T2

with subDHOs Ti of rank 3. Binary DHOs of rank 3 have been classified by
Del Fra [2]; there are three DHOs of this rank. One DHO has an ambient space
of rank 5 while the other two DHOs have an ambient space of rank 6. By
Proposition 4.8

dimU ≤ dimU(T1) + 4 ≤ 10.

By Theorem 4.6 each of the subDHOs Ti is the disjoint union of two subDHOs
of rank 2. Inspecting the three DHOs from [2] we deduce Ti ' H3, i = 1, 2.

We now describe an algorithm which enumerates possible DHOs S over F2

such that dimU(S) = 9 or = 10 and dimU(S)− dimP (S) ≥ 3.

We start with a DHO T1 ' H3 such that the 6-space U1 = U(T1) is embedded
in a space U of dimension 9 or 10 (the ambient space for the DHO S which we
like to find). We pick Z ∈ S − S(T1) = S(T2). Then

U = U1 + Z (1)

and
Q = U1 + Z0, (2)

is a hyperplane in U . Here Z0 ∈ T2, with Z0 ⊂ Z. Note that U = U1 ⊕ Z
for dimU = 10 whereas U1 ∩ Z = U1 ∩ Z0 has dimension 1 if dimU = 9.
Furthermore by Lemma 4.11

Z − Z0 = {XfZ | X ∈ S(T1)}. (3)

The algorithm has two steps. In Step 1 we compute all ”starter-sets”

S0 = S(T1) ∪ {Z}
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and in Step 2 we determine all ”completions” of Step 1, i.e. all DHOs S in U
such that S0 ⊂ S.

Step 1. Identify U with Fm2 , m = 9 or = 10 and U1 with 〈e1, . . . , e6〉 (the
ei’s form the standard basis of Fm2 ). If m = 10 we take Z = 〈e7, . . . , e10〉 and
Z0 = 〈e7, e8, e9〉. If m = 9 then C = U1 − (∪X0∈T1X0) has size 35 and we have
35 candidates for Z and Z0, namely Z = Zw = 〈e7, . . . , e9, w〉, w ∈ C and we
can take Z0 = 〈e7, e8, w〉. Let Z − Z0 = {z1, . . . , z8} and T1 = {X1, . . . , X8}.
For a permutation π ∈ Sym(8) set Xπ

i = 〈Xi, zπ(i)〉. Then by Equation (3)
any starter-set has the form Sπ = {Xπ

1 , . . . , X
π
1 , Z}. We test for a given π that

(i) the spaces in Sπ have dimension 4, (ii) that two spaces of Sπ intersect in a
1-space and (iii) that three spaces of Sπ intersect trivially.

Step 2. Let S0 = {X1, . . . , X9} a starter-set from Step 1. Set X̄i = Xi −
{XifXj | 1 ≤ j ≤ 9} for 1 ≤ i ≤ 9. Each of these sets has size 7. Let
X̄1 = {x1, . . . , x7} and for 1 ≤ i ≤ 7. Next we compute Ei, Ei the set of 4-spaces
S in U such that SfX1 = xi and that S0 ∪{S} satisfies conditions (ii) and (iii)
from above. Finally we would get the completions S of S0 by adding one element
from each Ei to S0 and testing conditions (ii) and (iii). In practice it turns out
that either one of the Ei is empty in which case there is no completion of S0 or
all Ei’s have size 1 in which case it turns out that S = S0 ∪{Si ∈ Ei | 1 ≤ i ≤ 7}
is a DHO.

All DHOs found this way are either alternating or dimU(S) − dimP (S) =
n − 1 and b(s, t) = X(s)fX(t) is symmetric of type (D), if the index of X is
chosen analog to Lemma 6.6.

It is known (see [1]) that H4 and D4 each have precisely one quotient whose
ambient space has rank m. So only these quotients are recovered by the com-
puter search.

6.3 The case n > 4

Proof. (of Theorem 1.3) Let n ≥ 5, X ∈ S and P (S) ∩X = 〈e0〉. Denote by H
the set of hyperplanes of X which contain e0.

(1) Let M ∈ H. As P (S[M ]) ⊆ P (S) we have for X ∈ S(M) that dim(X ∩
H) ∩ P (S[M ]) ≤ dimX ∩ P (S) = 1, so that by Lemma 2.1 dimU(S[M ]) −
dimP (S[M ]) ≥ n − 2. Moreover S[M ] is a quotient of Hn−1 or Dn−1 by
induction and Corollary 2.2.

(2) If S[K] is a subDHO for every 3-space K in X, then S is a quotient of
Hn:

For W ∈ S set W = X(s) if WfX = s. Define h : X ×X → U by h(s, t) =
X(s)fX(t). By Proposition 6.3 it is enough to show that h is symmetric of
type (H). Let s, t1, t2 ∈ X. Then there exists Z ∈ H with s, t1, t2 ∈ Z. By (1)
and Lemma 6.8 S[Z] is a quotient of Hn−1. For W ∈ S[Z] define W = Z(w)
if WfZ = w. Let X(t) ∈ S(Z) with W ⊆ X(t). Then w = t since WfZ =
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X(t)fX. Hence the function hZ : Z ×Z → U defined by hZ(s, t) = Z(s)fZ(t)
is the restriction of h to Z×Z. On the other hand by Lemma 6.5 and Remark 6.7
hZ is symmetric of type (H). The claim follows.

We assume from now on that (*) there exists a 3-space K in X such that
S[K] is not a subDHO.

(3) For everyM ∈ H the subDHO S[M ] is a quotient ofDn−1 and dimU(S[M ])−
dimP (S[M ]) = n− 2.

Note that e0 6∈ K by Theorem 4.6. Every subDHO S[M ] with K ⊂ M can
not be a quotient of Hn−1, i.e. such a DHO is a quotient of Dn−1. But then for
all 3-spaces e0 6∈ K ′ ⊂ M the set S[K ′] is not a subDHO (Lemma 6.8). But if
N ∈ H then N ∩M contains such a 3-space. The assertion follows.

(4) Assume (*). Then S is a quotient of Dn.

For W ∈ S set W = X(s) if WfX = s + ξ(XfW + e0)e0. Define d :
X ×X → U by d(s, t) = X(s)fX(t). By Proposition 6.4 it is enough to show
that d is symmetric of type (D). Let s, t1, t2 ∈ X. Then there exists Z ∈ H
with s, t1, t2 ∈ Z. By (3) S[Z] is a quotient of Dn−1. For W ∈ S[Z] define
W = Z(w) if WfZ = w + ξ(ZfW + e0)e0. Let X(t) ∈ S(Z) with W ⊆ X(t).
Then s = t since WfZ = X(t)fX. Hence the function dZ : Z×Z → U defined
by dZ(s, t) = Z(s)fZ(t) is the restriction of d to Z ×Z. On the other hand by
Lemma 6.6 and Remark 6.7 dZ is symmetric of type (D). The claim follows.

7 Further examples and computations

Recall the representation of DHOs by DHO sets (see [1]). The examples of
DHOs with a proper radical discussed so far are all quotients of extensions
of bilinear DHOs. In particular any quotient of a Huybrechts DHO or of a
Buratti-Del Fra DHO is of this ”standard type”. We present in this section
simply connected DHOs with a proper radical which are not of this ”standard
type”. Five examples have rank 4 (they are a byproduct of [1]), more than 250
have rank 5 and one has rank 6. These DHOs are provided in [8].

Example 7.1. The following five, simply connected examples of rank 4 are all
of the form S = S1 t S2, Si ' H3 is a Huybrechts DHO of rank 3. They occur
in the following way as entrances in [1, Tab.1, Tab. 2]:

Rank 4

Table ID dimU(S) dimP (S) bilinear
1 6 7 6 yes
1 10 7 6 no
1 24 7 6 no
2 2 8 6 yes
2 4 8 6 no
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Example 7.2. The construction of the examples of rank 5 is based on Propo-
sition 4.12. Suppose S is a bilinear DHO of rank 5 which contains a bilinear
subDHO T of rank 4 which induced by a hyperplane H containing the cen-
tralizer of the standard translation group in U(S). We call such a DHO a
prolongation of a rank 4 DHO. A simple search procedure for prolongations is
described in [8]. Excluding extensions we found 268 prolongations of bilinear
DHOs of rank 4.

We also computed the universal covers of these prolongations; a simple algo-
rithm for the computation of universal covers of split DHOs is described in [6,
Sec. 2.5]. We obtained in this way 32 simply connected DHOs with a proper
radical; 12 of these simply connected DHOs are extensions of bilinear rank 4
DHOs.

Example 7.3. The example S of rank 6 is bilinear, simply connected dimU(S) =
11 and dimP (S) = 10. Let T in V = F12

2 be the semifield spread of the semifield
which occurs under number XII in [11]. Let Z ∈ T be the component which is
the centralizer of the elation group. Then there exists a 1-space Q ⊆ Z ⊆ V
such that the DHO is the quotient S = T /Q = {(T +Q)/Q | T ∈ T − {Z}} in
the ambient space U(S) = V/Q. One has S = S1 t S2 where S1 ' S2 is a bi-
linear symplectic DHO of rank 5 described in [3, Ex. 3.14]. The automorphism
group of S has the form Aut(S) = T · H where T is the (normal) translation
group and H ' Sym(3) is the stabilizer in the automorphism group of X(0).

Remark 7.4. (a) For a given rank the proportion of binary DHOs with a
proper radical seems to be quite small in comparison to all isomorphism types.
For instance we could not find a DHO of rank 5 which is constructed as a
quotient of a spread set of a translation plane of order 32 and from the 80
semifield planes of order 64 only one case produced an example (Ex. 7.3).

(b) The examples of this section indicate that ”non-standard type” DHOs
with a proper radical should exist for arbitrary rank. Yoshiara [17] gives con-
ditions how to construct from a DHO T of rank n a DHO S of rank n + 1
such that (1) T occurs in S as a hyperplane-induced subDHO and that (2)
dimU(S) = n + 1 + dimU(T ). Bilinear DHOs T lead to the extension con-
struction. For non-bilinear DHOs T there is no easy criterion guaranteeing the
existence of S. More general: The construction of a series of ”non-standard
type” DHOs with a proper radical is an open problem.

Remark 7.5. Quotients of binary rank 5 DHOs with maximal ambient
spaces.

For a binary DHO S of rank n an upper bound for the dimension of the
ambient space is

(
n+1
2

)
+ 2 and it is conjectured that even dimU(S) ≤

(
n+1
2

)
holds (see [16]). Presently for n ≥ 4 precisely 4 binary DHOs of rank n with an
ambient space of dimension

(
n+1
2

)
are known, namely Hn, Dn, the Veronesean

DHO Vn and the Taniguchi DHO Tn. We computed all quotients of H5, D5, V5
and T5 (see [8]). These data show for instance:

(a) There are quotients of H5 and D5 which are not bilinear.
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(b) There are quotients S of D5 with U(S) = P (S) for dimU(S) = 10 or
= 11.

Up to this date only DHOs of split type were known (see in particular
Yoshiara [17], [18] for thorough investigations of the splitness of DHOs). The
most surprising discovery of our computations is:

V5 and T5 have quotients of non-split type.
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