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Abstract. In this paper, we consider new results on (k, n)-caps with n > 2.
We provide a lower bound on the size of such caps. Furthermore, we generalize
two product constructions for (k, 2)-caps to caps with larger n. We give explicit
constructions for good caps with small n. In particular, we determine the largest
size of a (k, 3)-cap in PG(3, 5), which turns out to be 44. The results on caps in
PG(3, 5) provide a solution to four of the eight open instances of the main coding
theory problem for q = 5 and k = 4.
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1 Introduction

Let PG(t, q) be the t-dimensional projective geometry over the finite field with
q elements. A (k, n)-cap in PG(t, q) is a set of k points, some n, but no n+ 1 of
which are collinear. The (k, 2)-caps are simply known as k-caps, while caps with
n > 2 are referred to as multiple caps. Apart from some papers by R. Hill [6],
in which bounds and exact values on the maximal size of such multiple caps are
obtained, (k, n)-caps with n > 2 have received little or no attention. In the same
time, they are interesting in the context of the main problem of coding theory
where many hypothetical codes meeting or lying close to the known bounds turn
out to be multiple caps.

In this paper, we summarize the known results and prove new bounds on the
maximal size of a (k, n)-cap in PG(t, q). In section 2, we prove a recursive upper
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bound on the size of a (k, n)-cap. As expected, a precise knowledge in the lower
dimension gives good upper bounds in higher dimensions. In particular, the
knowledge of the maximal size of a (k, 3)-arcs in PG(2, q) gives bounds that are
better than Hill’s bound. In section 3, we present general product constructions
for multiple caps. In section 4, some newly constructed multiple caps with n = 3
and n = 4 are presented. Finally, in section 5, we discuss the implication of
some results from section 4 to the so-called main coding theory problem. In
particular, we rule out the existence of Griesmer codes for q = 5, k = 4 and
d = 31, 32, 36, 37.

2 An Upper Bound

In [6], Ray Hill proved the following result: a (k, 3)-cap in PG(3, q), q > 3,
satisfies

k ≤ 2q2 + 1− α(q),

where α(q) is the smallest integer a which satisfies

a2
(

2q2 − a
q + 1− a

+ q2 − q − 1

)
+ a

(
q(2q2 − a)

q + 1− a
+ 3q3 − 6q

)
+ 6q3 − 2q4 ≥ 0.

For sufficiently large q,

α(q) ≥
√

17− 3

2
q +

7

2
− 49

2
√

17
.

Denote by mn(s, q) the largest size of a (k, n)-cap in PG(s, q), n < q.

Theorem 1. Let 2 ≤ s < t be integers. For any (s − 1)-dimensional subspace
S of PG(t, q), the size of a (k, n)-cap K in PG(t, q) satisfies

k ≤ mn(s, q)
qt−s+1 − 1

q − 1
− qK(S)

qt−s − 1

q − 1
. (1)

Proof. Let K be a (k, n)-cap in PG(t, q). Let S be an (s − 1)-dimensional
subspace of PG(t, q) and let T be a (t − s)-dimensional subspace in PG(t, q)
disjoint from S. Consider a projection π from S onto T , i.e.

π :

{
P \ S → T,
x → 〈S, x〉 ∩ T,

where P is the pointset of PG(t, q). Every s-dimensional subspace through S
maps to a point in T . The projection π induces a multiset Kπ on T by

Kπ(x) =
∑

y:y∈P\S,π(y)=x

K(y),
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where x ∈ T . We have k = K(S) + Kπ(T ). On the other hand Kπ(x) ≤
mn(s, q)− K(S) for every x ∈ T . This implies

k ≤ K(S) + (mn(s, q)− K(S))
qt−s+1 − 1

q − 1

= mn(s, q)
qt−s+1 − 1

q − 1
− qK(S)

qt−s − 1

q − 1
.

In order to get a better bound, we have to take S to be of maximal multi-
plicity. A trivial lower bound is K(S) ≥ n+ s− 2, which gives

k ≤ mn(s, q)
qt−s+1 − 1

q − 1
− q(n+ s− 2)

qt−s − 1

q − 1
. (2)

Using a more elaborate counting, we can get other estimates.
Fix an n-line L and count in two ways the multiplicities of all (s − 1)-

subspaces S through L. We have∑
S:L⊂S

Kπ(S) = (k − n)
(qt−2 − 1) . . . (qt−s+2 − 1)

(qs−3 − 1) . . . (q − 1)
.

Denote by M the maximal multiplicity of an (s − 1)-dimensional subspace
through L. Then

(M − n)
(qt−1 − 1) . . . (qt−s+2 − 1)

(qs−2 − 1) . . . (q − 1)
≥ (k − n)

(qt−2 − 1) . . . (qt−s+2 − 1)

(qs−3 − 1) . . . (q − 1)
,

which implies

M ≥ n+ (k − n)
qs−2 − 1

qt−1 − 1
.

Substituting back in (1) and solving for k, we get the following corollary.

Corollary 2. The size of a (k, n)-cap in PG(t, q) satisfies

k ≤ mn(s, q)(qt−s+1 − 1)(qt−1 − 1)− nq((qt−1 − 1)(q − 1)− (qt−s − 1)(qs−2 − 1))

(qt−1 − 1)(q − 1) + q(qs−2 − 1)(qt−s − 1)
.

(3)

Let us note that (3) is better than (2) when s is close to t. For small values of
s, (2) gives better estimates than (3). Note that (2) can be exact. For example,
if we take q = 5, t = 3, n = 4, s = 2, we have m4(2, 5) = 16 and (2) is k ≤ 76.
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In fact, a [76, 4, 60]5-code has been constructed in [2], which is equivalent to a
(76, 4)-cap in PG(3, 5) meeting the upper bound.

Better estimates of the numbers mn(s, q) will lead obviously to better bounds.
On the other hand, it is better to work with the bound (1) rather than with
(2) or (3) since for specific values of the parameters we might have additional
knowledge on the multiplicity of the maximal (s− 1)-dimensional subspaces.

The case of (k, 3)-caps in PG(t, q) is of particular interest. A trivial counting
in this case gives, which coincides with (2) for s = 2:

k ≤ qt−1 − 1

q − 1
m3(2, q)− 3q

qt−2 − 1

q − 1
.

Since the best estimate we know about m3(2, q) is m3(2, q) ≤ 2q+1 for all q > 3,
we get

k ≤ qt−1 − 1

q − 1
(2q + 1)− 3q

qt−2 − 1

q − 1
, (4)

which for t = 3 gives k ≤ 2q2 + 1. This has been improved already by Bramwell
and Wilson [3] who proved that k ≤ 2q2, not to speak of Hill’s result mentioned
above which is much stronger: k ≤ 2q2 − α(q), where α(q) ∼ Cq with C > 1

2 .
But of course, better estimates for m3(2, q), which is the case for q = 8, 9, 11, 13
(cf. [8]), will give better bounds. The nonexistence of (2q + 1, 3)-arcs for some
q will already give k ≤ 2q2 − q.

3 Some general product constructions for multiple
caps

In this section we present several product constructions for multiple caps. They
generalize earlier constructions for classical caps from [4] to multiple caps.

Theorem 3. Let there exist a (k, n) cap C1 in PG(t, q) and a hyperplane H in
PG(t, q) such that |C1 \ H| = w. Assume furthermore there exists a (l, n)-cap
C2 in PG(s, q). Then there exists a (wl + (k − w), n)-cap in PG(s+ t, q).

Proof. Write the points of C1 as (x, 1), x ∈ Ftq, if they are not on H, and in
the form (x′, 0), x′ ∈ Ftq, if they are incident with H. The points of C2 are
represented as (s+ 1)-tuples y over Fq. It is claimed that the set

C = {(x,y) | (x, 1) ∈ C1 \H,y ∈ C2} ∪ {(x′,0) | (x′, 0) ∈ C1 ∩H}

is a (wl + (k − w), n)-cap in PG(s+ t, q).
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First, we prove that the set C′ = {(x,y) | (x, 1) ∈ C1\H,y ∈ C2} is a (wl, n)-
cap. Assume there is a line containing at least n + 1 points of the above set.
The projections on the y-part of the coordinates of these points cannot be all
different since this would give n+ 1 collinear points in PG(s, q), a contradiction
to the fact that C2 is a (l, n)-cap. Therefore there must be at least one y′ in the
projection that appears with multiplicity greater than 1. Hence the y-part of
the points of C′ on the line before projection is a fixed non-zero vector y′ ∈ Fs+1

q .
But this contradicts the fact that C1 is a (k, n)-cap.

Now assume that there is a line containing n + 1 collinear points from C
of which at least one is of the form (x′,0). But now we can repeat the above
argument to get that the points on the line are of the form (x,y′) for a fixed
non-zero y′, (x′,0). Now we can construct n + 1 collinear points of the form
(x, 1), (x′, 0), which are obviously from C1, a contradiction. The set C has the
required cardinality, which completes the proof.

This theorem implies the following useful corollary.

Corollary 4. Assume there exist a (k, n)-cap in AG(t, q) with i empty hyper-
planes in general position and an (l, n)-cap in PG(s, q) that has j empty hyper-
planes. Then there exists a (kl, n)-cap in PG(s + t, q), with i + j − 1 empty
hyperplanes in general position.

Let us note that the construction from Corollary 4 can be reiterated to yield
the following corollary.

Corollary 5. Assume there exist caps with parameters (ki, n) in AG(ti, q), i =
1, . . . , σ. Assume furthermore there exists an (l, n)-cap in PG(s, q). Then there
exists a (k1 . . . kσl, n)-cap in PG(s+ t1 + . . .+ tn, q).

Remark 3.1. The following simple geometric construction also yields multiple
caps. Let Π = PG(s+ t+ 1, q) and let ∆1 and ∆2 be two subspaces of Π with
dim ∆1 = s, dim ∆2 = t such that ∆1 ∩∆2 = ∅.

Let C1 be a (k1, n)-cap in ∆1 and C2 be a (k2, n)-cap in ∆2, n ≤ q − 1. For
each pair of points x, y with x ∈ C1, y ∈ C2, select n points z1, . . . , zn, zi 6= x, y,
that are incident with the line through x and y. Define C as the set of all points
zi obtained in this way. It is straightforward to check that each point from C is
obtained from only one pair of points (x, y) ∈ C1 × C2. The set C turns out to
be a (k1k2n, n)-cap.

This construction can be obtained as a special case of Theorem 3. Any n
points in PG(1, q) are trivially a (n, n)-cap. For n ≤ q, this cap is affine. If
there exists a (k, n)-cap in PG(t, q), then there is a (kn, n)-cap in PG(t+ 1, q),
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which is also in AG(t + 1, q) if n < q. This observation and Theorem 3 now
imply the geometric construction.

What is a bit unsatisfactory about Theorem 3 is the fact that it uses its
ingredients in a unsymmetrical fashion. Now we present another construction,
which is a generalization of Theorem 10 from [4] for multiple caps.

Let the following be given:

• a (t+ 1)× k matrix A, whose columns represent the points of a (k, n)-cap in
PG(t, q); we assume that the first row of A has w entries (in the first positions
from the left) equal to 1, the remaining entries being 0;

• a (s+ 1)× l matrix B, whose columns represent the points of an (l, n)-cap in
PG(s, q); we assume that the first row of B has v entries equal to 1 (in the
first v positions from the left) while the remaining entries are 0.

Denote by a a typical column of A with first component equal to 1; by α a
column of A with first component equal to 0. Analogously, let b (resp. β) be
a vector of B having first component equal to 1 (resp. equal to 0). Let a′, α′,
b′, β′ be obtained from a, α, b, β, respectively by omitting the first component
(which is 0 or 1). Form all possible vectors of the following types:

type I (1,b′,a′)t,
type II (0, β′,a′)t,
type III (0,b, α′)t.

By Theorem 3, the columns of types I and II yield a (κ, n) cap for some κ.
By symmetry this is true for all columns of type I and III. Denote by M the
matrix containing the columns of all three types.

In what follows, we assume that the caps given by the matrices A and B
have tangent hyperplanes and these are the hyperplanes with equation X0 = 0,
i.e. k − w = l − v = 1. Let us denote by Q a set of points in PG(r, q) and let
x,y ∈ Fr+1

q be the (homogeneous) coordinates of two different points from Q.
We define

coefQ(x,y) :=
{
λ | x + λy ∈ Q, λ ∈ F∗q

}
. (5)

Theorem 6. Assume the following exist:

(1) a (k, n)-cap CA ⊂ PG(t, q) having a tangent hyperplane HA;

(2) an (l, n)-cap CB ⊂ PG(s, q) having a tangent hyperplane HB;

(3) representatives x, α ∈ Ft+1
q with x ∈ CA \ HA and α = CA ∩ HA, and

representatives y, β ∈ Fs+1
q with y ∈ CB \HB and β = CB ∩HB such that

coefCA
(x, α) ∩ coefCB

(y, β) = ∅.
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then there is a (kl − 1, n)-cap in PG(s+ t, q).

Proof. The vector space coordinates are chosen in such a way that HA is the hy-
perplane X0 = 0, and x = (1, 0, . . . , 0). For the points of CA \ {x, α}, we choose
a representative with first coordinate 1. We choose y, β and HB analogously.

Now we are going to prove that the point set defined above is a (kl−1, n)-cap.
Assume that there exists a line L containing n + 1 points. By Theorem 3,

this line contains a point represented by type II columns, as well as points
represented by type III columns. So assume that the points (0, β′,a′) and
(0,b′, α′) are on L. First, let us check that these points are different. As-
sume this not the case. Then b′ 6= 0 and a′ 6= 0 and there is λ 6= 0 such
that (0, β′,a′) = λ(0,b′, α′). This implies that λ ∈ coefCA

(x, α) ∩ coefCB
(y, β),

contradicting (3).
Now we can conclude that all points on the line L are represented by type

II or type III columns. We claim that there are at most n− 2 different columns
a′ that are a nonzero multiple of column α′. This is true as these correspond to
the points on the line (1,0) and (0, α′) and we have at most n points of CA on
a line. Analogous conclusion can be made for CB.

All the points on the line L that are different from the two already considered
are given by (0,b′, α′) + λ(0, β′,a′), where λ 6= 0. As there are at most n − 2
different columns a′ that are a nonzero multiple of the column α′, there must
be two points that have the same entry in the last segment. Hence a′ = 0 (as
α 6= 0). Analogously we get b′ = 0. So the line L contains just only two points
(0,0, α) and (0, β,0), a contradiction to n ≥ 2.

4 Results on caps in PG(k, q) for small q and small n

4.1 Caps with n = 3

The problem of finding the largest size of a (k, 3)-cap in PG(t, q) is nontrivial
for q ≥ 4. It is known that 31 is the largest size of such a cap in PG(3, 4) [6].
In the same paper, Hill proved that the (31, 3)-cap is projectively unique. Let
us note that this value implies an upper bound of 119 = 5 · 31 − 4 · 9 for the
maximal size of a (k, 3)-cap in PG(4, 4). This value is rather inaccurate since
the nonexistence of Griesmer [116, 5, 85] codes (cf. [10]) implies that a (k, 3)-
cap in PG(4, 4) has not more than 115 points. Using the trivial construction
(Remark 3.1.) trippling the number of points in the higher dimension one gets
a (93, 3)-cap in PG(4, 4). We can get a (95, 3)-cap by acting on the coordinate
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positions of the points
1222333121321233323
0101133112123111222
0011110111222331233
0000001111111111111
0000000000000001111

with the cyclic group 〈g〉 of order 5. It is assumed here that (x0, x1, x2, x3, x4)
g =

(x1, x2, x3, x4, x0). For the sake of brevity, the field elements 0, 1, α, α2 are
denoted by 0, 1, 2, 3, respectively.

In PG(3, 5), it was known that a (k, 3)-cap contains at most 48 points [9].
The parameters in this case are small enough to make a brute-force attack
feasible. Assuming the existence of an 11-plane in a maximal (k, 3)-arc and
using the classification of the plane (11, 3)-arcs (cf. e.g. [7]), we can fix (up
to equivalence) a part of the arc. It is then possible to perform an exhaustive
search for all possible extensions of the fixed set to a (k, 3)-arc. The largest size
of a cap thus obtained is 44. Clearly, a cap with more than 43 points has to
have an 11-plane [9]. This implies that 44 is the largest size of a cap in PG(3, 5).

Theorem 7. The largest size of a (k, 3)-cap in PG(3, 5) is 44.

We give examples of two non-isomorphic (44, 3)-caps in PG(3, 5). The ho-
mogeneous coordinates of the points are given as columns of the matrices below.

10101024214010324122314004133122403041412243
01100112344001122330011344112334400112240234
00011111111000000001111111222222233333334444
00000000000111111111111111111111111111111111

with spectrum

a2 = 8, a4 = 8, a7 = 14, a8 = 12, a9 = 40, a10 = 52, a11 = 22,

and ai = 0 for i 6= 2, 4, 7 . . . , 11, and

10101024210101322014340142323142041234231203
01100112340011234122334401122440223344001133
00011111110000000111111122222223333333444444
00000000001111111111111111111111111111111111

with spectrum

a2 = 6, a3 = 5, a4 = 2, a5 = 4, a6 = 5, a76, a8 = 12, a9 = 36, a10 = 63, a11 = 17,

8



ai = 0 for i 6= 2, 3, . . . , 11. Let us note that this is not a classification result.
Modifying the search, we can obtain a result, which is not so interesting in

the context of the maximal cap problem, but has important implications for the
main coding theory problem for four-dimensional codes over F5. Here we state
it separately. If we assume that the maximal multiplicity of a plane in PG(3, 5)
is 10, we can use the classification of all (10, 3)-arcs to fix a part of the arc and
try all possible completions. It turns out that the maximal size of a (k, 3)-cap
in PG(3, 5) without 11-planes is 40.

Theorem 8. Every (k, 3)-cap in PG(3, 5) with k ≥ 41 has an 11-plane.

Theorem 7 implies a better bound on the size of a (k, 3) cap in larger di-
mensions. So, the maximal size of a cap in PG(4, 5) is bounded by k ≤ 209
(k ≤ 6 · 44− 5 · 11), while the general bound (4) gives only k ≤ 251.

There exists a (145,3)-cap in PG(4, 5) having a cyclic automorphism of order
5. The generators of the 29 orbits of length 5 are given as columns of the
following matrix.

11113421342312221212232324343
01012231223144122423221144234
00111110000111223344112222443
00000001111111111111111111112
00000000000000000000111111111

There is a (467,3)-cap in PG(5, 5). It is invariant under the symmetric group
S6 acting on the points. The orbit lengths are 90, 60, 60, 60, 60, 45, 30, 30, 20, 6, 6.
Below, we give as columns representatives of the point orbits:

34224432132
34121421111
21111110111
21110110011
11010010011
10000010011

There is a better construction though. If we start with an (11, 3)-arc in
AG(2, 5) (which exists since each one of the two such arcs has an empty line)
and the (44, 3)-cap in PG(3, 5), we get by Corollary 4 a (484, 3)-cap in PG(5, 5).

We now turn to caps with n = 3 in PG(t, 7). In R. Hill’s bound α(7) = 3
and k ≤ 96 for t = 3.

The largest (k, 3)-cap, we can construct in PG(3, 7) so far is a (70,3)-cap.
The following is a nice description regarding the points as elements in GF(74).
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Take GF(74) and the group of 5th unit roots. The 70 points are the cosets of
ax with a a primitive root and x ∈ {0, 4, 7, 8, 12, 31, 32, 36, 53, 56, 57, 59, 64, 72}.

There is a (300,3)-cap in PG(4, 7) invariant under the symmetric group S5.
The orbit lengths are 60, 60, 60, 30, 20, 20, 20, 15, 5, 5, 5. Representatives of the
points are:

66653566156
25252346011
13121111011
11011111011
01011110011

There is a (1422,3)-cap in PG(5, 7) invariant under S6 acting on the points.
The orbit lengths are 360, 180, 180, 120, 90, 60, 60, 60, 60, 60, 60, 30, 30, 30, 15, 15, 6, 6.
Representatives of the point orbits are:

556566524544646613
324466413512236101
212241413111111001
112131101101111001
101111101101111001
001110101001111001

The table below summarizes our knowledge on the best lower and upper
bounds on the sizes of caps with n = 3 over some small fields.
Table 1. Maximal sizes of (k, 3)-caps in PG(t, q), t = 3, 4, 5, q = 4, 5, 7.

q = 4 q = 5 q = 7

PG(3, q) 31 44 70–96
PG(4, q) 95–115 145–209 300–663
PG(5, q) 285–451 484–1034 1422–4632

The table can be extended to geometries of larger dimension and over larger
fields. Unfortunately, we do not know results that are better than the general
bounds provided by Theorem 1, Theorem 3 and Theorem 6.

4.2 Caps with n = 4

It has been mentioned already that there is a (76, 4)-cap in PG(3, 5) constructed
as a Griesmer code in [2]. Let us note that the only possible intersection numbers
of this cap are 1, 6, 11, and 16. There is a trivial upper bound of 376 on the size
of a (k, 4)-cap in PG(4, 5). The divisibility property of the caps with parameters
(76, 4) implies an improvement on this bound.
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Theorem 9. Let K be a (k, 4)-cap in PG(4, 5). Then k ≤ 371.

Proof. Assume K is a (372, 4)-cap in PG(4, 5). By the Griesmer bound, such a
cap should have a hyperplane (solid) of multiplicity 76 which can be viewed as
a (76, 4)-cap in PG(3, 5). Such a cap is associated with a [76, 4, 60]5-code which
is divisible with weights 60,65,70,75. Actually the code from [2] does not have
words of weight 75. Hence the multiplicities of the planes in a 76-solid are 16,
11, 6, and, possibly 1. By a counting of the number of points through a plane
of maximal multiplicity contained in a w-solid, 0 ≤ w ≤ 76, we get that the
only admissible multiplicities for solids are 0, 1, 22, . . . , 26, 72, . . . , 76. Now note
that a (76, 4)-cap in PG(3, 5) necessarily has a plane π of multiplicity 11. (If we
assume the opposite we arrive at a contradiction by counting the multiplicities
of the planes through a 1-line in a 6-plane, or through a 0-line in a 1-plane.)
Count the multiplicities of the points in the solids Si, i = 0, . . . , 5, through π.
Clearly,

372 =
5∑
i=0

K(Si)− 5K(π) ≥ 6 · 72− 5 · 11 = 377,

a contradiction.

There exists a (123, 4)-cap in PG(3, 7). It can be obtained by acting with
the symmetric group S4 on the coordinates of the following points:

556245632366
211133511116
111011111111
000011101111

A (168, 4)-cap in PG(3, 8) can be obtained by acting with the same group
on the coordinates of the points

7342357556567
4111222344111
2001111111111
1000111111000

Here the field with eight elements is obtained as F2[x]/(x3 + x+ 1). The coef-
ficients of the binary representation of the integers in the matrix are the coeffi-
cients of the field element represented as element in F2[x]/(x3 + x + 1). So, 0
represents 0, 1 represents 1, 2 represents x, 3 represents 1 + x etc.
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A (312, 4)-cap in PG(4, 5) is obtained by acting on the points

121223241200
000000000000
000000000000
110011223341
001111111111

with the elements of a cyclic group of order 31 generated by the matrix
1 3 3 0 0
2 1 3 0 0
4 4 3 0 0
0 0 0 1 0
0 0 0 0 1

 .

A (526, 4)-cap in PG(4, 7) is obtained by acting on the points

1021601520534132431420
0100012346122301232230
0010000000111122223330
0000000000000000000000
0001111111111111111111

with the elements of a cyclic group of order 25 generated by
2 3 1 0 0
2 6 2 1 0
0 1 1 2 0
5 4 0 1 0
0 0 0 0 1

 .

Similarly, an (846, 4)-cap in PG(4, 8) is obtained by acting on the points

12041410312000
00112267747010
00000000011440
00000000000000
11111111111111

with a cyclic group of order 65 generated by
5 1 0 0 0
0 1 1 0 0
0 0 1 1 0
4 0 0 1 0
0 0 0 0 1

 .
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A (1232, 4)-cap in PG(5, 5) and a (2933, 4)-cap in PG(5, 7) can be obtained
under the action of S6 on the coordinates of the points given by the matrices

4434323344434443411
2322211223422313401
1111111223311111401
1111001111111111101
0011000111111111101
0000000111111101101

454565656656646665266461
333333652346143624266111
222212341225123111116111
111112221111111111111111
001101111111011111111111
000001110111011011111111

In PG(5, 8), we obtain a (4704, 4)-cap by using the product construction
(Theorem 3) with ingredients an affine (28, 4)-arc in PG(2, 8) and an (168, 4)-
cap in PG(3, 8). Since the latter cap is affine, the resulting (4704, 4)-cap has
also an empty plane and can be further used in the recursive constructions.

We summarize our knowledge on the (k, 4)-caps in the table below.
Table 2. Maximal sizes of (k, 4)-caps in PG(t, q) for t = 3, 4, 5, q = 5, 7, 8.

q = 5 q = 7 q = 8

PG(3, q) 76 123–148 168–220
PG(4, q) 312–371 526–1030 846–1756
PG(5, q) 1232–1876 2933–7204 4704–14044

5 Caps and Linear Codes

Some of the results in the previous section can help us to solve some open
problems on optimal linear codes.

A linear code is a k-dimensional subspace C of the vector space of all n-tuples
Fnq over the field Fq. The minimum distance between two different codewords
with respect to the Hamming metric is called the minimum distance of the linear
code. A linear code of length n, dimension k and minimum distance d is referred
to as an [n, k, d]q-code. It is well-known that the existence of an [n, k, d]q-linear
code C is equivalent to that of a (n, n − d)-multiarc in PG(k − 1, q). More
precisely, one can associate a multiset in PG(k − 1, q) with every ordered basis
of C in such a way that two multisets in PG(k−1, q) are projectively equivalent
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if and only if they are associated with codes that are semilinearly isomorphic.
The problem of optimizing one of the parameters n, k, d for fixed values of the
other two is sometimes called the main problem of coding theory. It might
turn out that a code is optimal with respect to one of the parameters, but not
optimal with respect to some of the others. However, if a code is optimal with
respect to the length it is also optimal with respect to the dimension and the
minimum distance. The smallest length for which there exists a linear code over
Fq of fixed dimension k and fixed minimum distance d is denoted by nq(k, d).
The Griesmer bound [5] is a natural lower bound on the function nq(k, d):

nq(k, d) ≥ gq(k, d) :=

k−1∑
i=0

d d
qi
e.

Let C be an [n, k, d]q-code and let K be an (n, n− d)-arc associated with C.
Important invariants of the weight function of K are the non-negative integers γi,
i = 0, . . . , k−2, defined as the maximal multiplicity of a subspace in PG(k−1, q)
of projective dimension i. It is easily checked that if n = t+ gq(k, d) then

γj ≤ t+

j∑
i=0

d d
qi
e.

The problem of finding the exact value of nq(k, d) has been resolved for small
fields and small dimensions only. In case of q = 5 the exact values of n5(k, d) are
known for k ≤ 3 for all d and for k = 4 for all d 6= 31, 32, 36, 37, 81, 82, 161, 162.
The bounds on n5(4, d) in these eight open cases are listed in the table below.

d g5(4, d) n5(4, d) n5(4, d)
this paper

31 41 41 – 42 42
32 42 42 – 43 43
36 47 47 – 48 48
37 48 48 – 49 49
81 103 103 –104 103 –104
82 104 104 –105 104 –105
161 203 203 –204 203 –204
162 204 204 –205 204 –205

For the first four cases, we have the following simple observation.

Lemma 10. (i) Let K be a (41, 10)- or (42, 10)-arc in PG(3, 5). Then γ0 =
1, γ1 = 3, γ2 = 10.
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(ii) Let K be a (47, 11)- or (48, 11)-arc in PG(3, 5). Then γ0 = 1, γ1 = 3, γ2 =
10.

By theorems 7 and 8, we get immediately the following corollaries.

Corollary 11. There exist no (41, 10)-arcs and no (42, 10)-arcs in PG(3, 5).
Equivalently, there are no [41, 4, 31]5-codes and no [42, 4, 32]5-codes and n5(4, 31) =
42, n5(4, 32) = 43.

Corollary 12. There exist no (47, 11)-arcs and no (48, 11)-arcs in PG(3, 5).
Equivalently, there are no [47, 4, 36]5-codes and no [48, 4, 37]5-codes and n4(4, 36) =
48, n5(4, 37) = 49.

These results have implications also in the larger dimensions.

Corollary 13. There exist no (43, 11)-arcs, no (48, 12)-arcs and no (49, 12)-
arcs in PG(4, 5). Equivalently, there exist no Griesmer [43, 5, 32]5-, [48, 5, 36]5-
and [49, 5, 37]5-codes.

Proof. Let K be a (43, 11)-arc in PG(4, 5). The projection from a 1-point is a
(42, 10)-arc in PG(3, 5) which does not exist. The same argument applies for
the other parameter sets.

Corollary 14. There exist no (198 + i, 42)-arcs in PG(4, 5) for i = 0, . . . , 4.
Equivalently, there exist no Griesmer [198 + i, 5, 156 + i]5-codes, i = 0, . . . , 4.

Corollary 15. There exist no (223 + i, 47)-arcs and no (229 + i, 48)-arcs in
PG(4, 5) for i = 0, . . . , 4. Equivalently, there exist no [223 + i, 5, 176 + i]5- and
no [229 + i, 5, 181 + i]5 codes, i = 0, . . . , 4.
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