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Abstract

We use the geometric description to determine the best parameters
of quaternary additive codes of small length. Only one open question
remains for length < 13. Among our results are the non-existence
of [12,7,5]-codes and [12,4.5,7]-codes as well as the existence of a
[13,7.5, 5]—code.
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1 Introduction

Additive codes are generalizations of linear codes, see for example Chapter
17 of [2] for a general introduction and a theory of cyclic additive codes. Here
we concentrate on the quaternary case.

Definition 1. Let k be such that 2k is a positive integer. An additive qua-
ternary [n, k]-code C (length n, dimension k) is a 2k-dimensional subspace of
2", where the coordinates come in pairs of two. We view the codewords as
n-tuples where the coordinate entries are elements of Fa.

A generator matrix G of C is a binary (2k, 2n)-matriz whose rows form
a basis of the binary vector space C.

Definition 2. Let C be an additive quaternary [n, k]-code. The weight of
a codeword is the number of its n coordinates where the entry is different
from 00. The minimum weight (equal to minimum distance) d of C is
the smallest weight of its nonzero codewords. The parameters are then also
written [n, k, d).

The strength of C is the largest number t such that all (2k, 2t)-submatrices
of a generator matriz whose columns correspond to some t quaternary coor-
dinates have full rank 2t.

Notation for length and dimension has been chosen to facilitate com-
parison with quaternary linear codes. In fact it is clear that each linear
[n, k]-code is also an additive [n, k]-code (where k of course is an integer) and
the notations of minimum distance and strength of the linear code coincide
with the additive notions introduced above.

The geometric description of an additive [n, k]-code is based on lines in
PG(2k—1,2). In fact, consider a generator matrix G. For each quaternary co-
ordinate i € {1,2,...,n} we are given points P;, Q; € PG(2k—1,2). Let L; be
the line determined by P;, Q);. The geometric description of code C as in Def-
inition 2 is based on this multiset of lines (the codelines) {L1, Lo, ..., L,}.
Code C has minimum distance > d if and only if for each hyperplane H of
PG(2k — 1,2) we find at least d codelines (in the multiset sense), which are
not contained in H. Strength ¢ means that any set of ¢ codelines is in general
position. Duality is based on the Euclidean bilinear form, the dot product
for binary spaces. The dual of an additive [n, k]-code C is an [n,n — k|-code,
and C has strength ¢ if and only if C* has minimum distance > t.

As an example consider the following analogue of the Simplex codes:



Definition 3. Let §; be the additive quaternary code described by the set of
all lines in PG(l —1,2), 1 > 3.

As the number of lines in PG(l — 1,2) is (2! — 1)(2!71 — 1)/3 it follows
that S; is an additive [(2' — 1)(2"7' — 1)/3,1/2,2"7%(2""! — 1)]-code. This
code is optimal. In fact, concatenation yields a binary linear [(2! — 1)(2!71 —
1),1,2!71(2'= — 1)]5-code, which meets the Griesmer bound with equality.
The smallest codes of independent interest in this family are the [7,1.5, 6]-
code S3 (geometrically the 7 lines of the Fano plane) and the [155,2.5,120]-
code Ss.

Recall that the geometric description of linear codes is based on multisets
of points, whereas the geometric description of additive quaternary codes
uses lines. A codeline not contained in hyperplane H meets it in one point.
This motivates to consider mixed quaternary-binary codes.

Definition 4. An [(I,r), k],2)-code is a 2k-dimensional vector space of bi-
nary (21+r)-tuples, where the coordinates are divided into l pairs (written on
the left) and r single coordinates. We view each codeword as an (I +r)-tuple,
where the left coordinates are quaternary, the right ones are binary.

A code [(I,r), k](4,2) is described geometrically by a multiset of [ lines and r
points (codelines and codepoints) in PG(2k—1,2). The code has strength > ¢
if any set of ¢ objects (codepoints or codelines) are in general position. The
definition of minimum distance (equal to the minimum weight) is obvious.
A generator matrix is a binary (2k, 2[ 4 r)-matrix whose rows form a binary
basis of the code. The dual of an additive [(I,7), k](4,2)-code of strength ¢ is
an additive [(I,7),l +7/2 — k,t 4 1](4,2)-code.

Blokhuis-Brouwer [1] determine the optimal code parameters for additive
quaternary codes of length < 12, with two exceptions. We fill those gaps
proving the following:

Theorem 1. There is no additive [12,7,5]-code.
There is no additive [12,4.5,7]-code.

On the constructive side we produce a [13,7.5,5]-code. The following
is a check matrix, described by 13 lines in PG(10,2), of strength 4 (the
convention is 1 = 10,2 = 01,3 = 11):
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Here is a list of the largest minimum distance d for additive quaternary

[n, k, d]-codes of length n < 13. The only question remaining open is the

existence of a [13, 6.5, 6]-code.
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The geometric work happens in binary projective spaces. As we find it



often more convenient to work with vector space dimensions we denote i-
dimensional vector subspaces by V; (= PG(i — 1,2)). The following obvious
observation is often useful:

Proposition 1. Let C be an additive [n, k, d]-code. Assume some i codelines
generate a subspace Va;_j. Then the subcode of C' consisting of the codewords
with vanishing entry in those i coordinates is an [n — i,k — i + j/2, d]-code.

The non-existence of a [12,7, 5]-code is proved in Section 3. In Section 2
the non-existence proof for [12,4.5,7] is outlined. A preliminary version of
parts of the present paper appeared in [3].

2 Nonexistence of an additive [12,7,5]-code

It is easier to consider the dual, a [12, 5]-code of strength 4. What is the maxi-
mum hyperplane intersection of this code C? It is impossible that there are at
most 5 lines on each hyperplane as this would produce an additive [12, 5, 7]-
code, which does not exist. It follows that there must be a hyperplane with
at least 6 codelines. There can be no 8 codelines on any hyperplane as this
would yield a [8,4.5] code of strength 4 whose dual would be a [8, 3.5, 5]-code.
Such a code does not exist.

Lemma 1. The mazimum number of lines of a [12,5]-code of strength 4 on
a hyperplane is either 6 or 7.

In particular we find a hyperplane that contains 6 codelines. This defines
an additive [6,4.5]-code. Its dual, a [6, 1.5, 5]-code, corresponds to using all
lines but one of the Fano plane and is therefore uniquely determined. The
following codelines can be used to describe our [6,4.5]-code of strength 4 :

Ll = <U1702>7 L2 = <U37U4>7 LS = <v57U6>7 L4 = <U7av8>7

Ls = (v + v3 + vs5 + vz, v9), Lg = (Vg + v4 + vg + Vs, Vg + V1 + V4 + U5 + Vg)

We ran a computer program that determined the points completing those
lines to a (6, 1)-code of strength 4. There are 45 such points. Exactly 24
of those points are distributed on lines that complete the [6,4.5]-code to a
[7,4.5]-code of strength 4. There are thus 8 such lines.

Assume at first there is a hyperplane H containing 7 codelines of C. We
can choose L1, ..., Lg above and Ly is one of the 8 lines that our computer
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search produced. The intersection with the codelines shows that this code
must be embeddable in a mixed [(7, 5), 4.5](4,2)-code of strength 4. A computer
search showed that not even a single point can be appended:

Proposition 2. There is no [(7,1),4.5|(24-code of strength 4.

We conclude that the maximum number of codelines on a hyperplane is
6. Choose Ly, ..., Lg as above. The intersection with the remaining codelines
shows that this can be extended to a [(6, 6), 4.5](4,2)-mixed code of strength 4.
The points forming the sextuple must be from the set of 45 extension points
mentioned above. A computer search showed that there are exactly six such
sextuples. In particular [(6,6),4.5](42)-mixed codes of strength 4 and their
duals, [(6,6),4.5, 5](4,2)-codes do exist.

Another computer program showed that none of those six codes can be
embedded in a [12, 5]-code of strength 4.

3 Nonexistence of an additive [12,4.5, 7]-code

The proof is geometric in nature and much more involved than in the case
of [12,7,5]. We work in PG(8,2). Geometric reasoning shows the following:

Lemma 2. There are no repeated codelines. Fach Vi contains at most 3
codelines and any three codelines generate Vi or Vg. Any two codelines are
mutually skew.

Let M be the union of the points on the codelines. Then M is a set
of 36 points, at most 22 on each hyperplane. This describes a binary code
(36,9, 14]5, obtained from the hypothetical [12,4.5,7] by concatenation. We
study the distribution of the points of M (codepoints) on subspaces as well
as the structure induced on corresponding factor spaces. The proof that
any three codelines must be in general position already involves a computer
search. It can then be shown that any two codelines are contained in a
subspace PG(4,2) which contains 8 codepoints. The final computer search
shows that this configuration cannot be extended to a [12,4.5, 7]-code.
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