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Abstract

We describe a code lengthening technique that uses Unequal Error Protec-
tion codes as suffix codes and combine it with iteration of the conventional
Construction X. By applying this technique to BCH codes, we obtain 5
new binary codes, 13 new ternary codes and 13 new quaternary codes. An
improvement of Construction XX yields 2 new ternary codes.

1 Introduction

The first two authors applied several lengthening techniques to BCH-codes
in [3, 4] and obtained linear codes with new parameters. A different rather
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sophisticated lengthening method was introduced in [10]. The suffix codes
used in this technique are known in literature as unequal error protection
(UEP ) codes (see [5, 9]). The third author used this method for the con-
struction of linear codes with new parameters [8, Ch. 6].

In this paper we combine lengthening of UEP codes and the “iteration
of Construction X” from [4]. Starting from BCH codes, we obtain 5 new
binary codes, 13 new ternary codes and 13 new quaternary codes. (In fact,
three of the quaternary codes already appeared in [8, Ch. 6]). The paper is
organized as follows.

In Section 2, we define two-level UEP codes and give two constructions
for such codes. In Section 3, we describe the basic lengthening technique and
show the usefulness of UEP codes in this construction. We also briefly recall
the “iteration of Construction X” from [4]. In Section 4, we apply the results
of Sections 2 and 3 to the lengthening of BCH codes. In the final section,
we improve Construction XX from [1] and obtain two new ternary codes.

2 Unequal Error Protection Codes

The intention of unequal error protection codes (or briefly UEP codes) is to
offer a larger error protection to more important message symbols than to
less important ones [5, 9]. As shown in [10] and in the next section, UEP
codes can advantageously be applied in code lengthening techniques. In this
paper we restrict ourselves to two-level UEP codes. For our purposes, the
following definition is most suited.

Definition 1 Let D > d. An [n, k] code C is an [n, k, (Dm, dk−m)] code if
it has minimum distance at least d and it contains an (k −m)-dimensional
subcode D such that any word of C \ D has weight at least D.

We continue with two constructions of two-level UEP codes.

Definition 2 Let the q-ary codes C1 and C2 have lengths n1 and n2, respec-
tively, and let i < min(n1, n2). The code C1 ∨i C2 of length n1 + n2 − i is
defined as

C1∨iC2 = {(u1, . . . , un1−i, un1−i+1+v1, . . . , un1+vi, vi+1, . . . , vn2) | u ∈ C1,v ∈ C2}.

Note that C1 ∨0 C2 is simply the direct sum of C1 and C2.
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Lemma 1 Let Cj be a q-ary [nj, kj, dj] code, j = 1, 2. Assume that d2 < d1

and 2i ≤ d1. Then C = C1 ∨i C2 is an [n, k1 + k2, (D
k1 , dk2

2 )] code, where
n = n1 + n2 − i and D = min(d1, d1 + d2 − 2i).

Proof: Let u∈C1, v∈C2, and consider

x = (u1, . . . , un1−i, un1−i+1 + v1, . . . , un1 + vi, vi+1, . . . , vn).

If u=0 and v6=0, then wt(x)≥ d2. If u 6=0 and v=0, then wt(x)≥ d1. If u
and v both are non-zero, then wt(x)≥ (d1 − i) + (d2 − i).
Hence, if (u,v)6= (0,0), then wt(x)≥ min(d2, d1, d1 +d2−2i) = d2. Moreover,
take D = {(0, . . . , 0, v1, . . . , vn) | v ∈ C2}. If x6∈ D, then u 6= 0 and as shown
above, wt(x)≥ min(d1, d1 + d2 − 2i).

In particular, the quaternary [8, 6, (33, 23)] code that was used in [8, Ch.
6] can be obtained as [5, 3, 3] ∨1 [4, 3, 2]. To give another example, we can
construct a quaternary [9, 6, (43, 23)] code as [6, 3, 4] ∨1 [4, 3, 2].

Here is a second construction of a two-level UEP code.

Theorem 1 Let q = 2f ≥ 4. Let ω1, ω2, . . . , ωq−2 denote the elements of Fq

different from 0 and 1. Let I denote the unit matrix of size k − 1, and let J
denote the k − 1× q − 2 matrix with all entries equal to one. The matrix

G =
(

1 . . . 1 0 . . . 0 ω1 . . . ωq−2

I I J

)
generates an [2k + q − 4, k, ((k + q − 3)1, 4k−1)] code.

Proof We take for D the code generated by the (k − 1) bottom rows of G.
Let m=(m1, . . . ,mk−1) ∈ (Fq)

k−1 and let m0 ∈ Fq. Consider the codeword
c defined by

c = (m0,m)G = (m01 + m,m, m0(ω1, . . . , ωq−2) + (
k−1∑
j=1

mj)1).

If m0 = 0 and wt(m)≥2, then wt(c)≥ 2wt(m)≥4. If m0 = 0 and wt(m)=1,
then

∑k−1
j=1 mj 6= 0, and so wt(c)≥ 1 + 1 + (q − 2) = q ≥ 4.

Now assume that m0 6= 0, so c∈C \ D. Clearly, wt(m01 + m) + wt(m)
≥ k − 1. Equality only holds if for 1 ≤ i ≤ k − 1, mi = 0 or mi = m0. As
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ω1, . . . , ωq−2 are all distinct, c ends in q − 2 distinct symbols, and so c ends
in at least q−3 non-zero symbols. We conclude that wt(c)≥(k−1)+(q−3).
If equality would hold, then mi would be in {0,m0} for all i, 1≤ i ≤ k − 1.
This then would imply that

∑k−1
i=1 mi is either 0 or m0, and in either case c

ends in q−2 non-zero symbols. We conclude that wt(c)≥ k+q−3 whenever
m0 6= 0.

As an example, Theorem 1 yields a quaternary [8, 4, (5, 43)] code.
Finally we construct two-level UEP codes by a variant of the familiar (u, u+
v)-construction.

Theorem 2 If q-ary codes Ci with parameters [ni, ki, di], i = 1, 2 exist, then
a q-ary [n1 + max(n1, n2), k1 + k2, (d

k2
2 , (2d1)

k1)] code exists.

Proof: Let u ∈ C1, v ∈ C2. The linear mapping φ is defined on the di-
rect sum of C1 and C2 by φ(u, v) = (u, u + v). Here the second component
u + v has length max(n1, n2). If n1 6= n2, then the shorter of the vectors
u, v is filled with zeroes at the end. Code C is defined as the image of φ.
As φ obviously has trivial kernel, C has dimension k1 + k2. If v = 0, then
wt(u, u + v) = 2wt(u). If v 6= 0, then wt(u, u + v) ≥ wt(v).

Choosing for C1 in Theorem 2 an [i, i, 1] code or an [i + 1, i, 2] code leads
to the following:

Corollary 1 Let C be a q-ary [n, k, d] code. There is a q-ary [n + i, k +
i, (dk, 2i)] code for all i ≤ n. If d ≥ 4 and i + 1 ≤ n, there is a q-ary
[n + i + 1, k + i, (dk, 4i)] code.

It may be noted that Theorem 2 can be generalized to allow the use of
UEP codes as ingredients. We will not pursue this in the present paper. In
Section 4 we will make use of the binary two-level UEP-code [16, 8, (8, 47)] and
of the ternary two-level UEP codes [12, 8, (46, 22)] and [8, 6, (32, 24)]. These
can be obtained from Corollary 1.

3 Code lengthening

In this section we describe the basic code lengthening technique known as
Construction X ([7, Ch. 17, Sec. 7]). We point out the “iteration of Construc-
tion X” from [4] and show how UEP codes can advantageously be used in
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Construction X. Throughout, d(A) denotes the minimum Hamming distance
of the code A.

Let C be an [n, k, d] code and let the suffix code S be an [e, κ, δ] code
defined over the same field. To each word x∈C, we append a suffix s(x)∈S,
and the extended code E(C) is defined as

E(C) = {(x, s(x)) | x ∈ C}.

If s induces a linear mapping (what we assume in the sequel), E(C) is an
[n + e, k] code. We wish of course that E(C) has large minimum weight.
The most simple situation is the following. Suppose that C contains an
(k − κ)-dimensional subcode U such that d(U) > d. We choose s such that
it has kernel U . If x 6∈ U , then wt(x, s(x)) = wt(x) + wt(s(x)) ≥ d + δ. If x
is a non-zero word of U , then wt(x, s(x)) = wt(x) ≥ d(U), and so

d(E(C)) ≥ min{d + δ, d(U)}.

More generally, we define for any linear subcode D of C the extension E(D)
by

E(D) = {(x, s(x)) | x ∈ D}.
Obviously, E(D) is linear whenever D is linear, and E(A) ⊂ E(B) whenever
A ⊂ B. Reasoning similarly as above, we find that

d(E(D)) ≥ min{d(D) + δ, d(U ∩ D)}. (1)

This is the result of “iteration of Construction X” [4].
The usefulness of UEP codes in code lengthening [10] is shown in the

following theorem. We lengthen the code C1 with a suffix code S.

Theorem 3 Let C1 ⊃ C2 ⊃ C3 be a chain of linear q-ary codes with param-
eters [n, k1, d1] ⊃ [n, k2, d2] ⊃ [n, k3, d3], where k1 > k2 > k3, d1 < d2 < d3.
Suppose that S is an [e, k1 − k3, ((d3 − d1)

k1−k2 , (d3 − d2)
k2−k3)] code. With

an appropriate choice of s, E(C1) is an [n + e, k1, d3] code.

Proof: Let S ′ be a subcode of S of dimension k2 − k3 such that any word
of S \S ′ has weight at least d3−d1. Choose the linear mapping s with kernel
C3 such that s(C2) = S ′. If x is a non-zero word of C3, then wt(x, s(x)) =
wt(x) ≥ d3. If x∈C2\C3, then s(x) is a non-zero word in D and so wt(x, s(x))
= wt(x) + wt(s(x)) ≥ d2+(d3−d2) = d3. Finally, if x∈C1\C2, then s(x)6∈D′,
whence wt(s(x)) ≥ d3 − d1, and so wt(x, s(x)) ≥ d1 + (d3 − d1) = d3.
Consequently, E(C1) has minimum distance at least d3.
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4 Using BCH-codes

We aim at extending binary, ternary and quaternary BCH-codes of moderate
lengths. It turns out that two-level UEP codes combined with the iteration
of Construction X produce good codes in certain situations.

The following notation for q-ary BCH-codes will be used. The length
n divides qr − 1 for some integer r. We put [i, j] = {i, i + 1, . . . , j} ⊂
ZZ/nZZ. Then C([i, j], n) denotes the q-ary BCH-code of length n with ze-
roes αi, αi+1, . . . , αj, where α is a primitive n-th root of unity in IFqr . We will
call [i, j] the defining interval. By the BCH bound, the minimum distance
of C([i, j], n) is at least j − i + 2. Moreover, the dimension of C([i, j], n) is
n−κ, where κ is the cardinality of the union of the cyclotomic cosets, which
intersect [i, j] non-trivially.
The tables are organized as follows. Choose Ci = C([l, ri], n) where r1 <
r2 < r3. Let ki be the dimension of Ci. Choose U to be the BCH-code with
defining interval [l′, r1] for some l′ < l. It will suffice to give l′ in the tables.
The members of the second chain of codes are then the BCH-codes with
defining intervals [l′, ri]. We also give the dimension k of U . Finally we list
the parameters of the suffix codes being used. These suffix codes have been
constructed in Section 2.
We illustrate the procedure with the first binary example. The first chain
of BCH-codes, with defining intervals [0, 6], [0, 8] and [0, 10], respectively,
has parameters [63, 44, 8] ⊃ [63, 38, 10] ⊃ [63, 35, 12]. The second chain cor-
responds to defining intervals [61, 6], [61, 8] and [61, 10]. The minimum dis-
tances of these codes are two larger than those of the corresponding members
of the first chain. Now we first apply Construction X with the [7, 6, 2] code as
suffix code to the codes C1 with defining interval [0, 6] and U with defining in-
terval [61, 6]. According to (1), we obtain a chain [70, 44, 10] ⊃ [70, 38, 12] ⊃
[70, 35, 14]. Finally we use Theorem 3 with [8, 4, 4] ∨1 [4, 3, 2] = [11, (44, 23)]
as suffix code S. The dimension of S indicates that we apply the method to
a 42-dimensional subcode of our 44-dimensional code. The result is a binary
[81, 42, 14] code.
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4.1 q = 2, n = 63

l r1, r2, r3 k1, k2, k3 l′ k suffix codes result

0 6, 8, 10 44, 38, 35 61 38 [7, 6, 2], [8, 4, 4] ∨1 [4, 3, 2] [81, 42, 14]
1 6, 8, 10 45, 39, 36 0 44 [1, 1, 1], [8, 4, 4] ∨1 [4, 3, 2] [75, 43, 12]

4.2 q = 2, n = 127

l r1, r2, r3 k1, k2, k3 l′ k suffix codes result

0 18, 20, 22 70, 63, 56 125 63 [8, 7, 2], [12, 7, 4] ∨1 [8, 7, 2] [154, 70, 26]
1 22, 26, 28 57, 50, 43 0 56 [1, 1, 1], [16, 8, (8, 47)] [144, 51, 32]
1 42, 46, 54 29, 22, 15 0 28 [1, 1, 1], [16, 8, (8, 47)] [144, 23, 52]

For the second example in this subsection it is vital that the primitive
BCH-code with designed distance 29 has true minimal distance 31. This was
observed in [6]. The construction results in a code [143, 51, 31]. This improves
upon a result in the last section of [4].

4.3 q = 3, n = 80

l r1, r2, r3 k1, k2, k3 l′ k suffix codes result

0 3, 4, 6 71, 67, 63 79 67 [4, 4, 1], [4, 2, 3] ∨1 [5, 4, 2] [92, 69, 9]
0 7, 9, 10 59, 55, 53 79 55 [4, 4, 1], [4, 2, 3] ∨1 [3, 2, 2] [90, 57, 13]
0 7, 10, 12 59, 53, 49 79 55 [4, 4, 1], [11, 6, 5] ∨1 [5, 4, 2] [99, 59, 15]
0 9, 10, 12 55, 53, 49 79 51 [4, 4, 1], [4, 2, 3] ∨1 [5, 4, 2] [92, 55, 15]
1 7, 9, 10 60, 56, 54 0 59 [1, 1, 1], [4, 2, 3] ∨1 [3, 2, 2] [87, 58, 12]
1 7, 10, 12 60, 54, 50 0 59 [1, 1, 1], [11, 6, 5] ∨1 [5, 4, 2] [96, 60, 14]
1 9, 10, 12 56, 54, 50 0 55 [1, 1, 1], [4, 2, 3] ∨1 [5, 4, 2] [89, 56, 14]
1 9, 10, 12 56, 54, 50 79 51 [6, 5, 2], [4, 2, 3] ∨1 [5, 4, 2] [94, 56, 15]
30 40, 41, 43 53, 49, 45 28 49 [5, 4, 2], [4, 2, 3] ∨1 [5, 4, 2] [93, 51, 17]
31 49, 50, 52 35, 33, 29 30 33 [2, 2, 1], [4, 2, 3] ∨1 [5, 4, 2] [90, 35, 24]
0 6, 9, 10 63, 55, 53 79 59 [4, 4, 1], [12, 8, (46, 22)] [96, 61, 13]
0 9, 10, 12 55, 53, 49 77 47 [11, 8, 3], [8, 6, (32, 24)] [99, 55, 17]
1 6, 9, 10 64, 56, 54 0 63 [1, 1, 1], [12, 8, (46, 22)] [93, 62, 12]
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4.4 q = 4, n = 63

l r1, r2, r3 k1, k2, k3 l′ k suffix codes result

0 5, 6, 8 50, 47, 44 62 47 [3, 3, 1], [5, 3, 3] ∨1 [4, 3, 2] [74, 50, 11]
0 9, 10, 12 41, 38, 35 62 38 [3, 3, 1], [5, 3, 3] ∨1 [4, 3, 2] [74, 41, 15]
1 21, 22, 25 26, 23, 20 0 25 [1, 1, 1], [5, 3, 3] ∨1 [4, 3, 2] [72, 26, 26]
1 5, 6, 8 51, 48, 45 0 50 [1, 1, 1], [5, 3, 3] ∨1 [4, 3, 2] [72, 51, 10]
1 9, 10, 12 42, 39, 36 0 41 [1, 1, 1], [5, 3, 3] ∨1 [4, 3, 2] [72, 42, 14]
1 22, 25, 26 23, 20, 17 62 19 [5, 4, 2], [6, 3, 4] ∨1 [4, 3, 2] [77, 23, 29]
1 25, 26, 29 20, 17, 14 0 19 [1, 1, 1], [5, 3, 3] ∨1 [4, 3, 2] [72, 20, 30]
15 22, 23, 25 44, 41, 38 13 41 [4, 3, 2], [5, 3, 3] ∨1 [4, 3, 2] [75, 44, 14]
20 42, 43, 46 22, 19, 16 17 19 [5, 3, 3], [5, 3, 3] ∨1 [4, 3, 2] [76, 22, 30]
1 21,22,25 26,23,20 0 25 [1, 1, 1], [7, 4, (4, 33)] [71, 24, 27]
1 25,26,29 20,17,14 0 19 [1, 1, 1], [7, 4, (4, 33)] [71, 18, 31]
1 41,42,46 8,7,4 0 7 [1, 1, 1], [8, 4, (5, 43)] [72, 8, 48]
0 41,42,46 7,6,3 59 4 [6, 3, 4], [8, 4, (5, 43)] [77, 7, 52]

5 An improvement on Construction XX

In this section, we improve on Construction XX from [1] and use this im-
provement to construct two new ternary codes.

Theorem 4 Let C1, C2 be q-ary codes of length n, put C = C1 + C2, C0 =
C1∩C2, dim(C) = k, dim(C/Cj) = dim(Cj/C0) = κj, j = 1, 2. Let the minimum
distances of the codes be dist(C) = d, dist(Ci) = di, i = 0, 1, 2. Put γ1 =
d0 − d1, γ2 = d0 − d2, γ = d0 − d.
Assume γ ≤ γ1 + γ2 − 2, put i = bγ1+γ2−γ

2
c.

If there exist [ej, κj, γj] codes Sj, j = 1, 2, then an [n + e1 + e2 − i, k, d0] code
exists.

Proof As suffix code S, we choose the [e1 + e2 − i, κ1 + κ2] code S1 ∨i S2.
Clearly, S enjoys the following properties.

• S = S1⊕S2, where Sj has dimension κj and minimum distance at least
γj, j = 1, 2.

• The minimum weight of S \ (S1 ∪ S2) is at least γ.
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We choose s such that it has kernel C0, s(C1) = S1 and s(C2) = S2. We
now show that d(E(C)) ≥ d0. If x is a non-zero word of C and s(x) = 0,
then x ∈ C0 and so wt(x) ≥ d0. If s(x) 6= 0 and x ∈ Cj, then wt(x, s(x)) =
wt(x) + wt(s(x)) ≥ dj + γj = d0 (j = 1, 2). Finally, if x 6∈C1 and x 6∈C2, then
s(x)6∈S1 ∪ S2, and so wt(x, s(x)) ≥ d + γ = d0.

We note that with the same assumptions as in Theorem 4, Construction
XX would produce an [n + e1 + e2, k, d0] code.

We give two applications: In [4] we considered among others ternary
primitive BCH-codes of length 80. If we consider those codes with defining
intervals [37, 0], [37, 3], [31, 0], [31, 3] we obtain ternary codes C, C1, C2, C0 with
parameters [80, 10, 45], [80, 6, 48], [80, 6, 51], [80, 2, 60], which satisfy our con-
ditions. Put d0 = 56. We have γ = 11, γ1 = 8, γ2 = 5. As ternary [9, 4, 5] and
[14, 4, 8] codes exist, we can use the suffix code S = [14, 4, 8] ∨1 [9, 4, 5] and
obtain a code with parameters

[102, 10, 56]3.

The defining intervals [37, 79], [37, 3], [31, 79], [31, 3] yield ternary codes
C, C1, C2, C0 with parameters [80, 11, 44], [80, 6, 48], [80, 7, 50], [80, 2, 60]. Put
d0 = 56 again. We have γ = 12, γ1 = 8, γ2 = 6. The suffix code S =
[14, 4, 8] ∨1 [11, 5, 6] yields an extended code with parameters

[104, 11, 56]3.
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