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Abstract

We establish a link between the theory of error-correcting codes
and the theory of (¢, m, s)-nets. This leads to the fundamental problem
of net embeddings of linear codes. Our main result is the construction
of four infinite families of digital (¢, m, s)-nets based on BC' H-codes.

1 Introduction

The needs of quasi-Monte Carlo methods of numerical integration have led
Niederreiter [7] to the definition of (¢, m, s)-nets. These are finite point sets
in the s-dimensional Euclidean unit cube satisfying certain uniformity con-
ditions. It has emerged from the work of Mullen/Schmid and Lawrence [0}, [5]
that (t,m, s)-nets are equivalent to certain finite combinatorial structures,
which are closely related to orthogonal arrays, short OA. We will term
these structures ordered orthogonal arrays or OOA. In this paper we
consider linear OOA. These are OOA, which are vector spaces over an un-
derlying finite field. The corresponding nets are special cases of what has
been termed digital nets. For a definition of digital nets and a discussion of
their primary applications we refer to [3]. Detailed discussions of the general
theory of low-discrepancy point sets and sequences as well as their applica-
tions in numerical integration and the generation of pseudorandom numbers
are to be found in Niederreiter’s book [g].

We will describe a close relationship between linear OO A and linear codes,
and formulate the important problem to decide if a given code possesses a
net-embedding. We then prove some systematic positive results in this
direction by constructing certain infinite families of digital (¢,¢ + 4, s)-nets,



which are based on binary and ternary BC H-codes. Our main results are
given in Theorem [T The state of the art concerning net parameters is doc-
umented in the tables of [4] and [2]. Tt turns out that the parameters of our
nets constitute considerable progress over what had been known before, the
reason being that we succeed in making use of the theory of linear codes in
a nontrivial way.

2 Basic definitions and statement of results
Definition 1 An ordered orthogonal array of depth [ denoted by
OOAy(k, s,1,b)

is an array with b*\ rows, sl columns and entries from a b-set, where the
columns occur in s ordered blocks B;,j =1,2,...,s of | each, subject to the
following condition:

Whenever k = 32%_, k;, where k; <l for each j, then the set of k columns
consisting of the first k; columns from each block B; is independent.

Here we call a set of columns independent if in the projection onto these
columns each tuple of entries occurs the same number of times. This can be
interpreted probabilistically as follows: identify the rows of the array with
the points of a probability space, with uniform distribution. Interpret each
column as a random variable with values in the b-set of entries. Assume
each entry occurs with the same frequency in each column. Then a family
of columns is independent if and only if the corresponding random variables
are statistically independent. An OOA is linear if b = ¢ is a prime-power,
the set of entries is the field JFj and the rows form a linear subspace. It
is then natural to consider generator matrices of linear OOA. These are
matrices whose rows form a basis of the OOA. It is clear that in the linear
case independence of columns is equivalent to linear independence of the
corresponding columns in the generator matrix. We are led to the following
Definition:

Definition 2 Let g be a prime-power. An M,(s,l,m, k) is an (m, sl)-matric
with entries in Iy, where the columns are divided into s blocks Bj,j =
1,2,...,s of | columns each, such that the following conditions are satisfied:



whenever k = 3735 k;, where k; <l for all j, then the set of k columns
consisting of the first k; columns from each Bj is linearly independent.

Essentially equivalent concepts have been considered in [9] and [I]. Ob-

serve that the columns of each block are linear ordered: there is a first
column, a second column, .... This is the reason why the name of ordered
OA has been chosen. Denote the sets of columns as considered in this Def-
inition as qualifying collections. We call s the length, [ the depth, m
the dimension and k the strength. Denote by (ki, ks, ..., ks) the type of
the qualifying collection in question (terms k; = 0 are omitted, the order is
immaterial). Values [ > k are not interesting as the (k+1)-st, (k+2)—nd . ..
columns of each block do not have to satisfy any condition. We will therefore
restrict to I < k. It is clear that the row space of an M,(s, 1, m, k) is a linear
OOAm-r(k,s,l,q). If | = k then a digital (m — k,m, s)-net in base ¢ can be
constructed. For details we refer to Mullen/Schmid and Lawrence [6], [5].
Let I' < [. If we use only the I’ first rows per block we see that we get an
M,(s,I",m, k) out of an M,(s, [, m, k). It has been observed by Mullen/Schmid
and Lawrence [0, 5] in a slightly more general context that an M,(s, k —
1,m, k) yields an M, (s, k,m, k) in various ways: as k-th column of block B,
we may choose the first column of some block Bj/, j' # j.
It is natural to start from depth 1. By definition an M,(s,1,m, k) is an
(m, s)—matrix each k columns of which are linearly independent. Its rows-
pace is known as a linear OA of strength k. Assume s > m. Its dual with
respect to the usual dot-product is then an (s — m)-dimensional code C' of
length s and minimum distance > k. The parameters of such codes are often
written in the form [s, s—m, > kJ,. Matrix M,(s, 1, m, k) is known as a check
matrix of C' ( an s-tuple belongs to C' if and only if its scalar product with
each row of the matrix vanishes). We collect this information in the following
Lemma:

Lemma 1 Let s > m. If an M,(s,l,m, k) exists for some | > 1 then the
family of first columns per block is a check matriz of a code [s,s —m, > kl,.

In particular the bounds on codes imply bounds on M,(s,l,m, k). We
raise the question when this relationship between codes and digital nets can
be inverted:



Definition 3 A g-ary linear code C with parameters [s,s—m, > k| possesses
an (m — k,m, s)net embedding if there is an M,(s,k,m, k) whose first
columns per block form a check matriz of C.

In the final section we will describe certain BC' H-codes and construct
net-embeddings. The results are as follows:

Theorem 1 The following digital nets exist and can be effectively constructed:

o My(2% +1,4,4r,4), thus digital binary (4r — 4,47, 2%" + 1)—nets
(r>2).

o My(2"+1,4,2r + 1,4), thus digital binary (2r — 3,2r +1,2" + 1)—nets
(r>3).

o My(2" —2,4,2r,4), thus digital binary (2r — 4,2r,2" — 2)-nets
(r odd, r > 3).

o M;(3"—1,4,2r+1,4), thus digital ternary (2r —3,2r +1,3" — 1)—nets
(r>2).

3 Constructions from BC H-codes

3.1 The first binary family

We consider the tower of finite fields
IF, C IFyr C Foer C IFoer = F, where r > 2.

Put s = 2" 4+ 1 and let W C F be the multiplicative subgroup of order s.
Choose a basis of I | Iy, define the binary (4r, s)—matrix M whose columns
are indexed by the a € W, column a being the 4r-tuple of coefficients obtained
when a is developed with respect to the basis. We will have opportunity
repeatedly to use the fact that W N Fhr = {1}. This follows simply from
ged(2?" +1,22" — 1) = 1.

Our first observation is that M has rank 4r. This is equivalent with the
statement that the [Fy-vector space < W > generated by W is < W >= F.
In fact, it is obvious that < W > is closed under multiplication, so is a



subfield. As 2% + 1 divides the order of its multiplicative group, we obtain
<W>=F.

Next we show that any four columns of M are linearly independent. First
of all, there is no 0-column and no two columns are identical. Assume three
columns have vanishing sum. This amounts to a = b + ¢, where a, b, c are
pairwise different elements of W. Raising this equation to the s-th power we
get

l=a"=b+)b+c)* =0+ +&) =+ c)(z + i).
Here we have used that the mapping © — 22”" is a field-automorphism and
that b* = ¢* = 1. Multiplying out we get 1 = 2 + %, where 1 # 2 =b/c € W.
Equivalently 22 + x + 1 = 0. It follows that x € IFy, C IFh2». We obtain the
contradiction 1 # x € W N Fher.
Assume a+b+c+d = 0, where a, b, ¢,d € W are pairwise different. Write this
in the form a+b = c¢+d, raise to power s as before. We obtain x—i—% =y-+ i,
where z = a/b,y = c¢/d. Removing the denominator and simplifying we
obtain 0 = (z+y)(14xy). As a field has no divisors of zero we conclude that
either x = y or x = 1/y. This means in clear that either ad = bc or ac = bd.
This is our result when we use the partition {a,b,c,d} = {a,b} U {c,d}.
We see that we can assume without restriction ac = bd. Use the partition
{a,b,¢,d} = {a,c} U{b,d}. Then either ab = cd or ad = bc. None of these
equations is compatible with the former equation ( in the first case we obtain
by division b/c = ¢/b, hence b = c. In the second case a similar contradiction
is obtained).
We have shown that matrix M is an Ms(s, 1,4r,4), equivalently the check
matrix of a code C' with parameters [s, s —4r, > 5]. In fact, C'is a BC' H-code
and the parameters can also be obtained by invoking results from the theory
of cyclic codes ( cyclotomic cosets for the dimension, the Roos bound for the
minimum distance), but we preferred to give a direct treatment. We proceed
to the construction of an Ms(s,3,4r,4) ( remember that this is equivalent
with an Ms(s,4,4r,4)). The blocks are indexed by the a € W. Choose
a € IFor \ IFy, 5 € IFyer \ IFyr. Define block B, as B, = (a, aa, fa). We have
to check that each qualifying collection of 4 columns is linearly independent.
Type (1,1,1,1) has been checked already.

e type (2,1,1)



Assume a, aa, b, ¢ are linearly dependent (a,b,c € W, different). Clearly
aa must be involved in the relation. It is impossible that pa = b for some
p € IFy as otherwise p = b/a € For N W = {1}, contradiction. This shows
that we must have pa = b + ¢, where p = « or p = «a + 1. Raising this
to power s we obtain p = x + 1/x, where 1 # z = b/c € W. Equivalently
2% + pxr + 1 = 0. This shows that z must be in the quadratic extension -
of IFy-. This leads to our standard contradiction again.

e type (2,2)

Assume a, aa, b, ab are linearly dependent (a,b € W,a # b). Because of
type (2,1,1) we know that aa and ab must be involved. a(a +b) = a+ b is
clearly impossible. We can assume a(a + b) = a, hence 1/a = 1 + z, where
x = b/a. We obtain the usual contradiction.

e type (3,1)

Assume a, aa, fa,b are linearly dependent (a,b € W,a # b). We get
b = pa for some p € Fyr, leading to the usual contradiction.

3.2 The second binary family
Consider the finite fields

I C IFyr C IFyer = F, where r > 2.

Put s = 2"+ 1 and let W C F be the multiplicative subgroup of order s.
Choose a basis of F' | IFy, define the binary (2r + 1, s)—matrix M such that
the column corresponding to a € W is (1, a)’, where the superscript ¢ denotes
transposition. As in the previous subsection it is clear that W N Fy = {1}
and that < W >= F, where < W > denotes the linear span. These facts
will be freely used in the sequel. We begin by showing that the rows of M
are linearly independent, so that M has full rank 2r 4 1. We have seen in the
preceding subsection that the last 2r rows of M are independent. It remains
to show that the first row of M, which is constant = 1, is not contained
in the linear span of the remaining rows. In order to see this it is handy to
interpret the entries of M in a different way: until now the choice of the basis
of F'| IF; had been irrelevant. Now we choose this basis as z;,i = 1,2,...,2r



such that tr(z;z;) = 0;;. Here we use the fact that every linear functional
: FF— IF, can be written as x — tr(ax) for some o € F. With this choice
we can interpret the space generated by rows 2,3,...,2r + 1 as follows: the
rows are indexed by u € F, the columns by a € W, with corresponding entry
tr(ua). We have to show that there is no u € F satisfying ¢r(ua) = 1 for all
a € W. Assume there is such an element u. It follows tr(u?a®) = 1 for all
a € W. As W has odd order a? varies over all elements of W, consequently
tr((u+u*)W) = 0. As W generates F' as a vector space and the trace-form is
a non-degenerate bilinear form it follows u +u? = 0, hence u € IF;. Certainly
u # 0. It follows u = 1, thus tr(a) = 1 for every a € W. Choosing a = 1 we
obtain a contradiction.

Next we show that no five columns of M are linearly dependent. As before,
there is no 0O-column, and no two columns are identical. The presence of
the first row shows that the sum of an odd number of columns can never
vanish. The remaining case of four columns of M with vanishing sum is
led to a contradiction exactly as in the previous subsection. For the present
subsection it suffices to know that any four columns are linearly independent.
The independence of any five columns of M will be used in Subsection [3.3|
We have shown that matrix M is an Ms(s,1,2r + 1,5), equivalently the
check matrix of a code C' with parameters [s,s — 2r — 1, > 6]. Again C' is
a BC'H-code, but we chose not to invoke the pertinent theory. We proceed
to the construction of an Ms(s,3,2r + 1,4). Choose some o € [y \ IF.
The choice of o will have to be restricted later. Define block B, as B, =
((1,a), (1, ), (0, a)"). As before we have to check three types of quadruples
of columns:

e type (2,1,1)

Assume (1,a), (1, aa)t, (1,b)%, (1,¢)" are linearly dependent (a,b,c € W,
different). Certainly (1, aa)’ has to be involved in the linear relation, and the
number of summands is 2 or 4. If the number of summands is 2 our standard
contradiction is obtained. Assume the sum of all four columns vanishes:
a + aa = b+ c. Raising this to power s we obtain (1 + «)® = z + %, where
l#£z=b/ce W As(1+a)=(1+a)(1+a*)=(1+a)(l+a)=1+a?
this simplifies to

P+ (1+a*)z+1=0.



This is where we have to restrict the choice of . In fact, choose a € IFyr \ IFy
such that 1+a? = v+% for some y € IFy: \ IF3. Then the quadratic expression
splits and we obtain (x+)(z+ %) = 0. It follows that = € [Fy-, and the usual
contradiction is obtained. It remains to make sure that v can be chosen as
required. The condition that o ¢ IFy is equivalent with 1 + o? ¢ IFy, hence
with v + % ¢ IF,. This expression is certainly nonzero, and v + % =1is
equivalent with v € IF}y. It follows that we need to assume vy € Fy \ [, and
r> 2.

e type (2,2)

This type presents no problems whatsoever.

e type (3,1)

Assume that (1,a)", (1,aa)’, (0,a)’, and (1,0)" are linearly dependent
with a,b € W,a # b. As before (0, a)" has to be involved, and exactly two of
the remaining three columns. The only critical case is a + aa = b. This leads
tob/a =1+ a € W N Fy, the usual contradiction.

3.3 The third binary family
Let r > 3 be an odd integer. Consider the fields

FQ - FQ’V‘ C F22r - F

Put s = 2" + 1. Observe that F' contains Fy = {0,1,w,w?}. Let W C F be
the multiplicative subgroup of order s, just as in the preceding subsection.
M is the binary (2r + 1, s)—matrix whose column corresponding to a € W
is (1,a)*, as before. We have shown that M has maximal rank 2r + 1 and
that no 5 columns of M are linearly dependent. This means that the BC H-
code B which has M as a check matrix has minimum distance > 6. Let us
consider the code C' which is obtained by truncating this BC' H-code in the
sense that the coordinate corresponding to 1 € W is omitted. Then C' has
length s — 1 = 2", minimum distance > 5 and a check matrix for C' is the
(2r,2")-matrix M’ with columns (a + 1) corresponding to a € W \ {1}. In
fact, let (x,) € C, where x, € IFy,a € W \ {1}. Define x1 = 3,1 Xo- Then
(Xa)aeW € B if and Only if 0= ZaeW Xal = Za;ﬁl Xa(a' + 1)



So far we have not been able to construct systematically an My (2", 4, 2r, 4)
whose set of first columns per block are the columns of M’. We are convinced
that this ought to be possible as computer experiments led to positive results
in the first cases r € {3,5,7}. We proceed by considering matrix M"” obtained
by restricting M’ to the columns (a+1)*, where a € W' = W\ {1,w,w?}. The
block corresponding to a € W’ is defined as B, = ((a + 1), (w(a + 1)), 1%).
We claim that this defines an My (2" — 2, 3,2r,4). As before type (1,1,1,1) is
all right by definition.

e type (2,1,1)

Assume at first (a + 1),w(a + 1), (b + 1) are linearly dependent (a,b €

W' a # b). As the relation must involve w(a + 1) and 1 +w = w? we can
assume without restriction w(a+1) = b+ 1. Raise this to power s and observe
that s = 2" 4+ 1 is a multiple of 3 as r is odd. We obtain a + 1/a = b+ 1/,
after simplification (a + b)(a + 1/b) = 0. As a # b we obtain a = 1/b. The
original equation now reads w(a +1) = 1/a+1 = (a+1)/a. As a # 1 we
obtain a = 1/w € Iy, a contradiction.
Assume know that a + 1,w(a 4+ 1),b+ 1,c¢+ 1 are linearly dependent. We
have just shown that b + 1 and ¢ 4+ 1 must be involved in the relation. If
w(a+1) was not involved this would contradict the fact that M’ has strength
4. We have without restriction w(a + 1) = b+ ¢. Raising this to power s we
obtain a + 1/a = b/c+ ¢/b. As all four summand are elements of W we find,
as in subsection [3.1] that we have without restriction a = b/c. The original
relation now reads w(a + 1) = b+ ¢ = ¢(a + 1), leading to the contradiction
c=w.

e type (2,2)

Assume a+1,w(a+1),b+1,w(b+1) are linearly dependent. Case (2,1,1)
shows that w(a + 1) and w(b + 1) must be involved in the relation. If the
sum of all four terms vanishes, then clearly a = b, a contradiction. The only
remaining case is without restriction w(a + 1) = w?(b+ 1). After division by
w we are back to the case of type (2,1,1).

e type (3,1)



Table 1: An M5(8,3,5,4)

100 | 022 | 011 | 021 | 011 | 122 | 211 | 011
021 | 100 | 001 | 001 | O11 | 121 | 111 | 221
011 | 021 | 100 | 010 | 020 | 110 | 010 | 200
010 | 010 | 020 | 100 | 010 | 010 | 110 | 110
000 | 000 | 010 | 010 | 100 | 110 | 100 | 100

Assume a + 1,w(a + 1),1,b 4+ 1 are linearly dependent. We know that
1 is involved in the relation. If b 4+ 1 was not involved we would obtain
the contradiction a € IFy. Assume b = a + 1. Raising to power s we obtain
1 = a+ 1/a, hence the contradiction a € IFy. It follows that the relation is
without restriction b = w(a + 1). Raising to power s again we get the same
contradiction a € IF}.

3.4 The ternary family

We constructed a ternary (1,5,8)—net by computer. An M;5(8,3,5,4) is
given in Table 1.

Let F = FF3,s = 3" — 1, where r > 3. Define a ternary (2r + 1,3" — 1)-
matrix M, whose columns are indexed by the nonzero elements a € F. Define
this column as u, = (1,a,a?®)!. Here the elements of F' are represented by
the coefficients when expressed in terms of a fixed basis of F' | [F3. In this
case we do not find it rewarding to circumvent the theory of BC H-codes.
Matrix M is in fact a check matrix of a ternary primitive BC'H-code with
dimension s—(2r+1) and minimum distance > 5. In particular the rows of M
are independent and any four columns of M are independent. We proceed
to the construction of an M;(s,3,2r + 1,4) : choose u, as first column in
block B,. The second column is v, = (0,va,(ra)?)!, the third column is
w, = (0,0, (va)?)t. We know that it suffices to check types (2,1,1), (2,2) and
(3,1) to prove our claim. The crucial point is the choice of the element v € F.

Lemma 2 For every r > 2 the field F' = I[F3 contains an element v such
that v generates the field F' over IF3,v is a nonsquare and v — 1 is a square.



Proof: Let € be a generator of the multiplicative group of F. In particular
€ is a nonsquare. If € — 1 is a square we can use v = € and are done. So
assume € — 1 is a nonsquare. It follows that the quotient 1 — 1/¢ is a square.
We distinguish the case when r is even ( -1 is a square) and when r is odd
(equivalently -1 is a nonsquare). When r is even we have that 1/e — 1 is a
square. Put v = 1/e. Assume now r is odd. As € — 1 is a nonsquare we can
repeat the argument above and assume that € + 1 is a nonsquare. It follows
that 1 — 1/e and 1 4 1/e are squares, so that 1/e — 1 is a nonsquare. Put
v=1/e—1.m

Choose an element v € F satisfying the conditions of Lemma

Lemma 3 Columns u,,uy, where a,b are different nonzero elements of F,
are always independent of any column ¢ = (0,7,7?), where v # 0.

Proof: Assume there is a nontrivial linear combination of these columns.
Observe that all our linear combinations are over I[F3. We can assume that
the coefficient of ¢ is = 1. By changing the roles of a, b, if necessary, we get
the equations v = a — b,7? = a? — b%. As v? = a? + b? + ab, we get ab = b2,
from which the contradiction a = b is derived.m

e type (2,1,1)

Assume v, = xu,+yup+zu. with coefficients z,y, 2 € [F3. Lemmal[3|shows
that no coefficient vanishes. The first coordinate shows that x +y+ 2z = 0. It
follows that they must be equal, either = 1 or = —1. In the first case the re-
maining coordinates yield the equations (v —1)a = b+c, (V2 —1)a® = b* + %
Adding the square of the first equation to the second yields after simplifica-
tion v(v — 1)a® = (b — ¢)?. This contradicts our assumption that v(v — 1) is
a nonsquare.

So assume z = y = z = —1. We get the equations (v + 1)a = —b — ¢, (V? +
1)a* = —b? — ¢*. An analogous procedure yields after subtraction and simpli-
fication va? = (b—c)?. This contradicts the assumption that v is a nonsquare.

e type (2,2)

Assume we have a nontrivial linear combination wu, + xv, = yu, + zvy
for some a # b. Observe at first that v, and v, are not linearly dependent.



In fact, they are not equal as otherwise a = b, nor are they negatives of
each other, or (va)? = —(va)?, contradiction. It follows that w,y cannot
both vanish. The first coordinate shows w = y. We can assume w =y = 1.
Lemma [3] shows that zz # 0. If x = 2z = 1, then the second coordinate
shows (v + 1)a = (v + 1)b, hence a = b. The same contradiction is derived
when r = z = —1. It follows that we can assume x = 1,z = —1. We obtain
the equations (v + 1)a = (1 — v)b and (v + 1)a? = (1 — v?)b?. Subtracting
the square of the first equation from the second we get after simplification
v —1=a?/b?. Use this in the first equation, substituting for (1 —v). We get
v+1=—a/b. It follows (v +1)?> = v — 1. This yields v? + v — 1 = 0. We see
that v € IFy, contradiction.

e type (3,1)

Assume wuy, = ru, + yv, + 2w,. As the columns belonging to one block
are independent, we may assume w = 1. The first coordinate shows x = 1.
The second coordinate shows y # 0 as otherwise a = b. Lemma |3 shows
2z # 0. Assume y + 2z = 0. The last coordinate shows b? = a?, hence b = —a.
The second coordinate yields the contradiction v € [F3. Two cases are left:
if y=2=—1,then b=a(l —v),b* = a*(1 +v?) = a®>(V? + v+ 1). It follows
v = 0. If finally y = z = 1, then the same procedure yields v € [F3 again.m
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