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Abstract

Perpendicular Arrays are ordered combinatorial structures, which
recently have found applications in cryptography. A fundamental con-
struction uses as ingredients combinatorial designs and uniformly
t-homogeneous sets of permutations. We study the latter type of
objects. These may also be viewed as generalizations of t-homogeneous
groups of permutations. Several construction techniques are given.
Here we concentrate on the optimal case, where the number of per-
mutations attains the lower bound. We obtain several new optimal
such sets of permutations. Each example allows the construction of
infinite families of perpendicular arrays.

1 Introduction

Definition 1 A perpendicular array PAλ(t, k, v) is a multiset A of in-
jective mappings from a k-set C into a v-set E, which satisfies the following:
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• for every t-subset U ⊆ C and every t-subset W ⊆ E the number of
elements of A (eventually counted with multiplicities) mapping U onto
W is λ, independent of the choice of U and W.

Alternatively A may be viewed as an array with C as set of columns
and E as set of entries, where each mapping contributes a row. Here we are
primarily interested in the case k = v = n.

A PAµ(t, n, n) may be described as a µ-uniform t-homogeneous mul-
tiset of permutations on n objects. We speak of a PA(t, n, n) if we are
not interested in the value of µ. A PA(t, n, n) is inductive, equivalently is an
APA(t, n, n) if it is a PA(w, n, n) for every w, 1 ≤ w ≤ t. Every PA(t, n, n)
is inductive provided t ≤ (n + 1)/2 (see [8]). In the above APA stands for
authentication perpendicular array. This term was coined by D.R. Stinson
([8]) and further generalized in [2]. The notation stems from an application
in the cryptographical theory of unconditional secrecy and authentication.

The general definition is as follows:

Definition 2 An authentication perpendicular array APAµ(t, k, v) is
a PAµ(t, k, v) which satisfies in addition

• For any t′ < t, and for any t′ + 1 distinct entries we have, that among
all the rows of the array A which contain all those entries, any subset
of t′ of those entries occurs in all possible subsets of t′ columns equallly
often.

Thus PA and APA may be viewed as t-designs, where the blocks are or-
dered. The basic ingredients in the construction of general APA and related
structures are

• t-designs, and

• APA(t, n, n).

In fact the unordered structure underlying an APA(t, k, v) is a t-design
with block-size k. An APA(t, k, k) may be used to yield the required ordered
structure. (see [8]).
In the sequel we concentrate on sets (instead of multisets) of permutations.
Such arrays may be called simple.
Examples of APA(t, n, n) are furnished by t-homogeneous groups of permu-
tations. However, as a consequence of the characterization of finite simple
groups all the t-homogenous groups of permutations are known
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(2 ≤ t ≤ (n + 1)/2). Aside from the alternating and symmetric groups there
is no infinite family of t-homogeneous groups on n objects when
3 < t ≤ (n + 1)/2. It is therefore necessary to find different methods of
constructing

APAµ(t, n, n). Given t and n we consider the problem of constructing
APAµ(t, n, n) which are as small as possible. This is equivalent to minimizing

µ. As the number of permutations of an APAµ(t, n, n) is divisible by
(

n
w

)
for every w, 1 ≤ w ≤ t, it follows that µ is divisible by LCM{

(
n
w

)
|w =

1, 2, . . . t)}/
(

n
t

)
.

Definition 3 Put

µ0(t, n) = LCM{
(

n

w

)
|w = 1, 2, . . . t)}/

(
n

t

)
.

An APAµ(t, n, n) is called optimal if µ = µ0(t, n).

We list the values of this function for small t :

µ0(1, n) = 1.

µ0(2, n) =
{

1 if n odd
2 if n even.

µ0(3, n) =
{

1 if n ≡ 2(mod 3)
3 otherwise.

µ0(4, n) =



1 if n ≡ 3, 11(mod 12)
2 if n ≡ 5, 9(mod 12)
3 if n ≡ 7(mod 12)
4 if n ≡ 0, 2, 6, 8(mod 12)
6 if n ≡ 1(mod 12)
12 if n ≡ 4, 10(mod 12).

Our primary interest here is in the construction of optimal APA(t, n, n).
We may restrict attention to the case t ≤ (n + 1)/2. This is due to the
fact that a uniformly t-homogeneous set of permutations on n objects is also
uniformly (n− t)-homogeneous.
For t = 1 there is no problem. An APA1(1, n, n) is nothing but a latin square
of order n. For t = 2 and n = q a prime-power, the affine group AGL1(q)
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is an APA2(2, q, q). This is optimal if q is a power of 2. If q is odd, then
AGL1(q) contains an APA1(2, q, q) (see [7]). The projective group PSL2(q)
is an APA3(3, q+1, q+1) if q is a prime-power, q ≡ 3(mod 4). This is optimal
if
q ≡ 3, 11(mod 12). This yields optimal

APA3(3, 12, 12), APA3(3, 24, 24), APA3(3, 28, 28), . . . .

These are the only known infinite families of optimal APA(t, n, n). In [5] an
APA2(2, 6, 6) was constructed. In [3] it was shown that the group
PSL2(q), q 6≡ 3(mod 4), can be halved as a uniformly 2-homogeneous set
of permutations on the projective line. The case q = 5 yields another con-
struction of an APA2(2, 6, 6). An APA3(3, 6, 6) is constructed in [6] and
[1]. A recursive construction given in [2],Corollary 6 when applied to an
APA1(2, 5, 5) (equivalently: an APA1(3, 5, 5)) also yields APA3(3, 6, 6).
The affine group AGL1(8) is an APA1(3, 8, 8), the group AΓL1(32) is an
APA1(3, 32, 32). An APA3(3, 9, 9) was constructed in [5] as a subset of the
group PGL2(8). To the best of our knowledge these are all the optimal
PA(t, n, n), t ≤ (n + 1)/2 which have been known that far.
In sections 2 and 3 we describe new methods of construction. Our main
result is the following:

Theorem 1 • There exist (optimal)

– APA2(2, 10, 10)

– APA2(2, 12, 12)

– APA3(3, 7, 7)

– APA4(4, 8, 8)

• There is a (non-optimal) APA4(3, 11, 11) contained in the Mathieu
group M11.

• For q ∈ {3, 5, 7, 9} the group PΓL2(q
2) contains an
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APAq−1(2, q
2 + 1, q2 + 1).

The construction of optimal APA(bn/2c, n, n) is one of the central prob-
lems in the area. The authors are convinced that this is a very hard problem
in general. It is obvious that an optimal APA(bn/2c, n, n) is also an optimal
APA(t, n, n) for every t, bn/2c ≤ t ≤ n. We get:

Corollary 1 There exist (optimal)

APA3(4, 7, 7), APA5(5, 7, 7), APA15(6, 7, 7), APA105(7, 7, 7),

APA5(5, 8, 8), APA10(6, 8, 8), APA35(7, 8, 8), APA280(8, 8, 8).

Moreover a symmetry in the construction yields the following corollary:

Corollary 2 There exist (optimal)

• APA2(2, 5, 6)

• APA2(2, 9, 10)

• APA2(2, 11, 12)

2 The double coset-method

Definition 4 Let G and H be subgroups of the symmetric group on n letters.
A multiset A of permutations of the ground set is (G, H)-admissible if for
every g ∈ G, h ∈ H, σ ∈ A we have gσh ∈ A (if A is not simple we demand
that the multiplicity of σ and of gσh are the same).

Let now A be an APA(t, n, n). For arbitrary permutations g and h the
multiset gAh is an APA(t, n, n) again. Therefore the set G = {g|gA = A}
is a group, the stabilizer of A under the action of the symmetric group Sn

from the left. By operation from the right the situation is analogous. If A
is (G, H)-admissible and α, β are arbitrary permutations of the ground set,
then αAβ is (αGα−1, β−1Hβ)−admissible. We may therefore replace G and
H by conjugate subgroups. If A is a (G, H)-admissible APAµ(t, n, n), then
the multiset A−1 of inverses is a (H, G)-admissible APAµ(t, n, n). A (G, H)-
admissible set of permutations may equivalently be described as a union of
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double cosets for G and H.
Let us visualize the multiset A of permutations as an array with n columns,
where each element of A, eventually counted with multiplicities, contributes
a row, each row being a permutation. If A is (G, H)-admissible, then let H
operate on the set of columns, whereas G permutes the entries of the array.
Consider first the problem of constructing APA2(2, n, n), n even. Such an
array A has n(n − 1) elements. It is then conceivable that A is (G, G)-
admissible, where G is a group of order n − 1. Assume G = Zn−1 in its
natural action on n points, G =< ζ >, ζ = (∞)(0, 1, 2, . . . n − 2). Then A
must be the union of two double cosets, one of which is Zn−1 itself:

A = Zn−1 ∪ Zn−1 · σ0 · Zn−1.

Thus A is determined by one permutation σ0. Observe that σ0 may be re-
placed by an arbitrary element of the same double coset. As µ = 2, there
must be an element in Zn−1 · σ0 · Zn−1 fixing the set {∞, 0}. As A is an
APAn−1(1, n, n), no element of A − Zn−1 can fix ∞. We choose σ0 to be
the unique element of A affording the operation σ0 : ∞ ←→ 0. Write
σ0 = (∞, 0) · ρ0, where ρ0 is a permutation of {1, 2, . . . n− 2}.
Consider the circle C = Cn−1 of length n − 1 with set {0, 1, 2, . . . n − 2} of
vertices and neighbourhoodrelation

i ⊥ j ⇐⇒ |i− j| ≡ 1(mod n− 1).

Let d( , ) denote the distance in C, ∆ = {1, 2, . . . n
2
− 1} the set of distances

6= 0. For every δ ∈ ∆ let Pδ be the set of unordered pairs {x, y} of vertices of
C satisfying xy 6= 0, d(x, y) = δ. Observe that |Pδ| = n− 3 for every δ ∈ ∆.

Theorem 2 Let n be an even number. Then the following are equivalent:

• There is a (Zn−1, Zn−1)-admissible APA2(2, n, n).

• There is a permutation ρ of {0, 1, 2, . . . n − 2}, ρ(0) = 0 such that for
every δ ∈ ∆ the following is satisfied:

|ρ(Pδ) ∩ Pδ| = 1.

|ρ(Pδ) ∩ Pδ′| = 2 (δ′ ∈ ∆, δ′ 6= δ).
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Proof. Write Zn−1 = {z(i)|i = 0, 1, 2, . . . n− 2}, where

z(i) : τ 7−→ τ + i (mod n− 1).

Then the typical element z(i)σ0z(j) of A− Zn−1 affords the operation

τ 7−→ (τ + i)σ0 + j.

Let A, B be two unordered pairs of elements in {∞, 0, 1, 2, . . . , n − 2}. We
have to make sure that exactly two elements of A map A onto B. We have

z(l − j) :∞ −→∞, j −→ l.

z(−j)σ0z(l) : j −→∞ −→ l.

z((l − k)σ−1
0 − j)σ0z(k) :∞ −→ k, j −→ l.

z(−i)σ0z(l − (j − i)σ0) : i −→∞, j −→ l.

In fact the element of A affording one of these operations is uniquely de-
termined in each case. This shows that the condition is satisfied whenever
∞ ∈ A or ∞ ∈ B, independent of the choice of ρ0.
Let now A = {i, j}, B = {k, l}, where∞ /∈ A∪B, i 6= j, k 6= l. Exactly then is
there an element of Zn−1 mapping A onto B if d(i, j) = d(k, l). This element
is then uniquely determined. An element z(α)σ0z(β) affords the operation
i 7→ k, j 7→ l if and only if

(i + α)ρ0 + β = k

(j + α)ρ0 + β = l

The condition on α is (i + α)ρ0 − (j + α)ρ0 = k− l. Interchanging k and l we
see that a necessary and sufficient condition for α is

d((i + α)ρ0 , (j + α)ρ0) = d(k, l).

The Theorem is now obvious.

Thus the existence of a (Zn−1, Zn−1)-admissible APA2(2, n, n) is equiva-
lent to the existence of a permutation on n− 1 letters, which fixes one letter
and destroys the metric given by a circle of length n− 1 in the most effective
way.
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Theorem 3 Let n be even. If n is a power of 2 or n ∈ {6, 12}, then there
is a (Zn−1, Zn−1)-admissible APA2(2, n, n).

Proof. If n = q is a power of 2, then the group AGL1(q) is an APA2(2, q, q).
As it contains the multiplicative group of the field IFq, it is (Zn−1, Zn−1)-
admissible.
For n = 6 and n = 12 it suffices, by the preceding theorem, to give the
permutation ρ0. If n = 6, then ρ0 is uniquely determined: ρ0 = (1, 4). If
n = 12, we may choose

ρ0 ∈ {ρ1 = (1, 3, 9, 5, 4)(2, 8, 10, 7, 6), ρ2 = ρ−1
1 ,

ρ3 = (1, 7)(2, 5)(3, 10)(4, 6)(8, 9), ρ4 = (1, 8)(2, 3)(4, 10)(5, 7)(6, 9)}.

An exhaustive search showed that that for n ∈ {10, 14, 18, 20, 22} there
is no (Zn−1, Zn−1)-admissible APA2(2, n, n).

Definition 5 Fix Z = Zn−1 and C = Cn−1 as before. Let Π = Πn−1 be the
set of permutations ρ0 such that ρ = (0)ρ0 satisfies the conditions of Theorem
2.

In fact Π5 = {(1, 4)}, Π11 = {ρ1, ρ
−1
1 , ρ3, ρ4}, where the permutations are

given in the proof of the preceding Theorem.

Lemma 1 If ρ ∈ Π, then I(ρ) ∈ Π and N(ρ) ∈ Π, where the involutory
operations I and N are defined by

I(ρ)(τ) = ρ−1(τ) (1)

N(ρ)(τ) = ρ(−τ). (2)

Moreover the group < I, N > generated by I and N is dihedral of order 8.

Proof: This is a consequence of the following easily checked facts: I and
N are involutory operations mapping Π onto itself. The product IN has
order 4.
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The elements of Π11 are rather interesting.We have

ρ3(x) =
∏

x∈IF ∗2
11

(x,−4x),

ρ1(x) = x · 3( x
11

),

where (a
b
) is the Legendre symbol. We tried to generalize this to larger

fields but were not successful. If A = A(ρ0) = Zn−1 ∪ Zn−1 · ρ0 · Zn−1 is
an APA2(2, n, n), then A(ρ−1

0 ) is simply the set of inverses. In contrast to
this the relation between A(ρ0) and A(g(ρ0)) for other g ∈< I,N > may be
rather mysterious. It happens that one of them is sharply 2-transitive while
the other is not. Even more can happen. Consider the case n = 12 again.
The group < I, N > operates transitively on Π11. In spite of that the group
generated by A(ρ1)
( and by A(ρ−1

1 )) is the full symmetric group S12, whereas A(ρ3) and A(ρ4)
generate a copy of the Mathieu group M12.

The following constructions of (G, H)-admissible sets of permutations are
computer-results. They were obtained by the third author. In each case we
give G (operating on the columns of the array), H (operating on the entries
of the array) and the generator-matrix, whose rows are the generators of
double-cosets. The set of symbols is {1, 2, . . . , n}. It is easy to check that the
arrays have the desired properties.

Theorem 4 Let A be a union of double cosets of groups G and H, where
the double coset-representatives are the rows of the generator-matrix M.

• Let G =< (1, 2, 3)(4, 5, 6)(7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9) >,

H =< (1, 5, 6, 7, 10)(2, 4, 9, 3, 8) >,

M =
1 2 3 4 5 6 7 8 9 10
1 4 9 6 8 2 5 10 7 3

Then A is an APA2(2, 10, 10).

• Let G =< (1, 2, 3, 4, 5, 6, 7) >,

H =< (2, 3, 4, 5, 6) >,
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M =
1 2 3 4 6 5 7
1 2 3 5 7 4 6
1 2 4 3 6 7 5

Then A is an APA3(3, 7, 7).

• Let G =< (2, 3, 4, 5, 6, 7, 8) >,

H =< (4, 5, 6, 7, 8) >,

M =

1 2 3 4 5 6 7 8
2 1 4 3 5 6 8 7
2 5 1 3 4 6 8 7
2 4 6 1 3 5 8 7
2 6 3 1 4 7 8 5
2 7 8 1 4 6 3 5
2 8 4 1 6 3 5 7
2 8 6 1 4 7 3 5

Then A is an APA4(4, 8, 8).

• Let G =< (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) >,H =< (2, 3, 4, 5, 6)(7, 8, 9, 10, 11) >

M =

1 2 4 6 3 11 9 7 8 5 10
1 2 6 7 10 11 8 5 3 4 9
1 2 11 5 3 10 4 8 6 7 9
1 2 4 10 6 5 11 9 3 7 8
1 2 10 9 8 5 3 7 6 4 11
1 4 8 5 10 3 2 11 7 6 9
1 2 10 5 4 6 8 9 7 11 3
1 7 6 5 4 11 2 8 9 3 10
1 2 8 3 10 6 9 4 5 7 11
1 5 8 6 9 4 2 7 10 3 11
1 2 7 6 4 9 5 8 3 10 11
1 7 9 4 10 5 2 6 3 8 11

Then A is an APA4(3, 11, 11).
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Our construction of an APA2(2, 10, 10) will be generalized in the next
section.
The second author found the first example of an APA2(2, 10, 10) in January
1992. His example is contained in the symmetric group S6 in its 2-transitive
action on 10 points. The construction was obtained by the probabilistic
search technique simulated annealing.

3 The projective semi-linear group

The APA2(2, 10, 10) as constructed in the previous section is contained in
the projective semi-linear group PΓL2(9). More precisely the group < A >
generated by A is PSL2(9) < φ >, where PSL2(9) ∼= A6 is the special linear
group and φ is the Frobenius automorphism of IF9 over IF3. The second author
conjectures that this construction generalizes as follows:

Conjecture 1 Let q be an odd prime-power. Then there is a subset A ⊂
PΓL2(q

2) such that A is an (Z(q2+1)/2, Eq2)−admissible

APAq−1(2, q
2 + 1, q2 + 1).

Here Z(q2+1)/2 and Eq2 denote the cyclic respectively elementary abelian sub-
group of PSL2(q

2) of the corresponding orders.

The conjecture has been verified for q ≤ 9.

Proposition 1 There exist

• APA4(2, 26, 26) ⊂ PΓL2(25)

• APA6(2, 50, 50) ⊂ PΓL2(49)

• APA8(2, 82, 82) ⊂ PΓL2(81)

We mention some more APAµ(t, n, n), where µ is small without being
optimal:
The unitary group U3(5) = PSU3(5

2) is an APA16(2, 126, 126), the smallest
Ree group 2G2(3) ∼= PΓL2(8) is an APA4(2, 28, 28), whereas 2G2(27) is an
APA52(2, 19684, 19684). The smallest Suzuki group 2B2(8) is an

11



APA16(2, 65, 65) and 2B2(32) is an APA62(2, 1025, 1025). Further PSL2(8)
is an APA4(4, 9, 9) and PΓL2(32) is an APA4(4, 33, 33).

4 Some authentication perpendicular arrays

Let A be an APAλ(2, k, v). The transitive kernel C0(A) was defined in [2] as
the set of columns c which satisfy that for every column c′ 6= c the restriction
A{c,c′} of A to columns c and c′ is an ordered design ODλ/2(2, 2, v). It was
proved that for c ∈ C0(A) the restriction of A to C − {c} is an
APAλ(2, k − 1, v). We improve on [2],Proposition 3 and Corollary 15:

Proposition 2 Let A be an APA2(2, n, n), which is (G, 1)-admissible, where
the group G of order n− 1 fixes one column c and transitively permutes the
remaining columns. Then c ∈ C0(A).

Proof. It is easily seen that for every column c′ 6= c and every pair a, b
of entries there is a row of A having a in column c and b in column c′. As
the number of rows of A is n(n−1), it follows that A{c,c′} is an OD1(2, 2, n).

Application of this to our constructions of APA2(2, 6, 6), APA2(2, 10, 10)
and APA2(2, 12, 12) yields Corollary 2.
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