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Abstract

We use lengthening and an enhanced version of the Gilbert-Varshamov lower
bound for linear codes to construct a large number of record-breaking codes.
Our main theorem may be seen as a closure operation on data bases.

Index Terms

Linear codes, lengthening, Gilbert Varshamov-bound.

1 Introduction

1 Let q be a prime-power, which will be fixed throughout the discussion.
Denote by IFq the field of q elements and by V (n, i) the number of vectors of
weight at most i in IF n

q . It is clear that

V (n, i) =
i∑

j=0

(
n

j

)
(q − 1)j. (1)

Let C be a q-ary code with parameters [n, k−1, d]. As C has qk−1 elements
it follows that if qk−1V (n, d−1) < qn, then there is a vector v ∈ IF n

q , which has
distance ≥ d from every code-word ∈ C. This leads to the Gilbert-Varshamov
bound:
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Theorem 1 (Gilbert-Varshamov bound) If V (n, d − 1) < qn−k+1, then
a q-ary linear code with parameters [n, k, d] exists.

Using orthogonal arrays the following can be proved.

Theorem 2 If V (n− 1, d− 2) < qn−k, then a q-ary linear code with param-
eters [n, k, d] exists. Moreover every code [n− 1, k− 1, d] can be embedded in
a code [n, k, d].

This is to be found in the book by Mac Williams and Sloane ([3], page
34). For the sake of completeness we shall give a proof in the final section. It
is easy to see that this is always stronger than the Gilbert-Varshamov bound.
Combining Theorem 2 with the method of lengthening yields new codes:

Theorem 3 Assume V (n− 1, d− 2) < qn−k. If there exist codes [n− i, k −
i, d + δ] and [e, i, δ], then a code [n + e, k, d + δ] can be constructed.

A proof of Theorem 3 will be given in the following section. It should
be noted that Theorem 3 uses only the code parameters. No information
on subcodes is needed. We like to think of it as of a closure operation on
data bases. In order to illustrate its use we give a binary example: a code
D with parameters [126, 36, 34] is known to exist. It can be derived from a
[128, 36, 36] constructed in [4]. As V (126, 26) < 290 it follows from Theorem 2
that D can be embedded in a code C with parameters [127, 37, 28]. Applying
construction X to the pair C ⊃ D with [6, 1, 6] as auxiliary code yields the
new code [133, 37, 34].
In Table 1 we list some more applications of Theorem 3. In all cases i = 1, so
that the auxiliary code is the repetition code [e, i, δ] = [δ, 1, δ]. The following
parameters are given:

• q ∈ {2, 3, 4},

• the parameters [n− 1, k − 1, d + δ] of the known code D,

• δ,

• the parameters [n, k, d + δ] of the resulting code E .

It is easy to write a program which operates on any given data base and
produces the closure of the data base under Theorem 3. All in all Theorem
3 leads to hundreds of improvements in the present version of the data base.
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Table 1:

q D δ E
2 [123,29,39] 8 [132,30,39]
2 [126,29,42] 10 [137,30,42]
2 [135,29,45] 10 [146,30,45]
2 [197,65,41] 3 [201,66,41]
2 [206,96,31] 3 [210,97,31]
3 [40,24,9] 2 [43,25,9]
3 [43,24,10] 2 [46,25,10]
3 [52,13,22] 3 [56,14,22]
3 [59,32,13] 2 [62,33,13]
3 [64,17,24] 2 [67,18,24]
3 [65,16,25] 2 [68,17,25]
3 [81,16,41] 10 [92,17,41]
3 [83,16,42] 10 [94,17,42]
4 [44,22,14] 3 [48,23,14]
4 [40,14,15] 1 [42,15,15]
4 [42,14,17] 2 [45,15,17]
4 [59,27,17] 2 [62,28,17]
4 [63,27,21] 4 [68,28,21]
4 [65,27,23] 5 [71,28,23]
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2 Proofs

Let A be a linear subspace of dimension n−k of IF n−1
q , which is an orthogonal

array of strength t, and let A be a generator matrix of A. We wish to add
an additional column to A such that the resulting subspace of IF n

q still is
an orthogonal array of strength t. The columns which do not do the job are
precisely those vectors in IF n−k

q , which can be written as linear combinations
of at most t − 1 columns of A. The number of such linear combinations is
at most

∑t−1
i=0

(
n−1

i

)
(q − 1)i. This number happens to equal V (n − 1, t − 1).

Thus, if V (n − 1, t − 1) < qn−k, then our orthogonal array can be extended
in the required manner. By Delsarte theory a linear subspace of IF n

q is an
orthogonal array of strength t if and only if its dual has minimum distance
≥ t+1. Considering duals we see that we have proved the following: if there
is a code C with parameters [n − 1, k − 1, d] and if V (n − 1, d − 2) < qn−k,
then C can be extended to a code [n, k, d]. Just as in the case of the Gilbert-
Varshamov bound it is easy to see by induction that the condition of the
existence of an [n− 1, k − 1, d] is not needed. Theorem 2 is proved.
In order to show that Theorem 2 is always better than Theorem 1 it suffices
to show the inequality

qV (n− 1, d− 2) < V (n, d− 1). (2)

In fact, consider the V (n − 1, d − 2) vectors of length n − 1 and weight
≤ d − 2. Adding a coordinate and extending each of these vectors in all q
possible ways yields qV (n− 1, d− 2) different (but obviously not all) vectors
of length n and weight ≤ d− 1. This proves our last claim concerning Theo-
rem 2.
Consider Theorem 3: we use a basic fact on lengthening known as construc-
tion X ([3], see also [1]):

Lemma 1 (construction X) Let C be a q-ary code with parameters [n, k, d]
and D a subcode of C of codimension κ and minimum distance ≥ d + δ for
some δ > 0. If there is a code with parameters [e, κ, δ] then there is a code
[n + e, k, d + δ] which projects onto C.

The assumptions of Theorem 3 show that the code [n− i, k− i, d+ δ] can
be embedded in a code [n, k, d]. Application of construction X to this pair of
codes leads to the conclusion of Theorem 3.
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