Extensions of generalized product caps

Yves Edel
Mathematisches Institut der Universität
Im Neuenheimer Feld 288
69120 Heidelberg (Germany)

Abstract

We give some variants of a new construction for caps. As an application of these constructions we obtain a 1216–cap in PG(9,3) a 6464–cap in PG(11,3) and several caps in ternary affine spaces of larger dimension, which lead to better asymptotics than the caps constructed by Calderbank and Fishburn [1]. These asymptotic improvements become visible in dimensions as low as 62, whereas the bound from [1] is based on caps in dimension 13,500.

1 Introduction

Let PG(n,q) be the projective space of dimension n over the finite field $I\!\!F_q$. A k-cap K in PG(n,q) is a set of k points, no three of which are collinear [10]. The maximum value of k for which there exists a k-cap in PG(n,q) is denoted by $m_2(n,q)$. Denote by $m_2^{aff}(n,q)$ the corresponding value in AG(n,q). As $m_2(n,2) = m_2^{aff}(n,2) = 2^n$ we can and will assume q > 2 in the sequel. The numbers $m_2(n,q)$, $m_2^{aff}(n,q)$ are only known, for arbitrary q, when $n \in \{2,3\}$, namely, $m_2(2,q) = m_2^{aff}(2,q) = q+1$ if q is odd, $m_2(2,q) = m_2^{aff}(2,q) = q+2$ if q is even, and $m_2(3,q) = q^2+1$, $m_2^{aff}(3,q) = q^2$. Aside of these general results the precise values are known only in the following cases: $m_2(4,3) = m_2^{aff}(4,3) = 20$ [13], $m_2(5,3) = 56$ [7], $m_2^{aff}(5,3) = 45$ [5], and $m_2(4,4) = 41$ [3]. Finding the exact value for $m_2(n,q)$ or $m_2^{aff}(n,q)$, $n \geq 4$ seems to be a very hard problem [8, 9]. As an application of our new construction we obtain improved lower bounds on

some values $m_2(n,3)$. The first examples of improvements are a 1216–cap in PG(9,3) and a 6464–cap in PG(11,3).

A natural asymptotic problem is the determination of

$$\mu(q) = \limsup_{n \to \infty} \frac{\log_q(m_2(n,q))}{n} = \limsup_{n \to \infty} \frac{\log_q(m_2^{aff}(n,q))}{n}.$$

It is well-known (and also will be explained later) that for every cap A in AG(n,q) we have the inequality $\mu(q) \geq \log_q(|A|)/n$. As a cap cannot be larger than its ambient space, clearly $\mu(q) \leq 1$. It is an interesting open problem to decide if $\mu(q) < 1$. The affine part of an ovoid in PG(3,q) shows $\mu(q) \geq \frac{2}{3}$. The affine points of a family of caps in PG(6,q) from [2] yield the slightly better bound $\mu(q) \geq \frac{\log_q(q^4+q^2-1)}{6}$. No better lower bound seems to be known for general q, except for the ternary and quaternary cases. It follows from [1] that $\mu(3) \geq 0.7218\ldots$ The 120 affine points of the 126-cap in PG(5,4) found by Glynn [4, 6] show that $\mu(4) \geq 0.3 + \frac{\log_4(15)}{5} = 0.6906\ldots$ The construction given in this article can be seen as a generalization of one of the constructions of Calderbank and Fishburn [1]. Although the construction works for general q all our applications are in the ternary case. Our constructions of caps in ternary affine spaces lead to a better bound for $\mu(3)$. The best bound proved in this article is $\mu(3) \geq 0.724851\ldots$

This leaves us with two research problems. Firstly to improve the bound on $\mu(3)$ by finding better capsets (for a definition see Definition 9), secondly to find good caps to which we can apply the construction for q > 3.

2 The product construction

A cap $A \subset AG(n,q)$ is a subset $A \subset \mathbb{F}_q^n$ such that the points $(1:a), a \in A$ form a cap in PG(n,q). Let $B \subset \mathbb{F}_q^{m+1}$ be a set of representatives of a cap in PG(m,q). For every $0 \neq a \in \mathbb{F}_q^n$ denote by $\langle a \rangle$ the 1-dimensional subspace $\mathbb{F}_q a$. This is a point in PG(n-1,q). For $0 \notin A \subset AG(n,q)$ denote $\langle A \rangle = \{\langle a \rangle | a \in A\}$.

Theorem 1 (the product construction). Let $A \subset AG(n,q)$ be a cap and $B \subset \mathbb{F}_q^{m+1}$ be a set of representatives of a cap $\langle B \rangle \subset PG(m,q)$. Then $(A:B) := \{(a:b)|a \in A, b \in B\} \subset PG(n+m,q)$ is an $(|A| \cdot |B|)$ -cap. If $\langle B \rangle \subset AG(m,q)$, then $(A:B) \subset AG(n+m,q)$.

Theorem 1 is due to Mukhopadhyay [12]. The special case when n = 1 and A consists of two points in $AG(1,q) = \mathbb{F}_q$ yields a 2|B|-cap in AG(m+1,q). This is the well-known **doubling construction**. The following is a generalization of the product construction:

Theorem 2 (generalized product construction). Let $A_1, \ldots, A_c \subset AG(n, q)$ be caps and $B \subset \mathbb{F}_q^{m+1}$ a set of representatives of a cap $\langle B \rangle \subset PG(m, q)$, partitioned as $B = B_1 \cup \cdots \cup B_c$. Then $\bigcup_{i=1}^c (A_i : B_i)$ is a cap in PG(n+m, q).

Proof. Each $(A_i : B_i)$ is a cap by Theorem 1. The second coordinate shows that the union is a cap. \blacksquare

If in Theorem 2 we choose $A_1 = A_2 = \cdots = A_c$ Theorem 1 is obtained. We study the generalized product construction in the hope to obtain products which are not complete.

Let a generalized product cap be given. We ask when a point (u:v) will be an extension point. The case v=0 is easily decided:

Theorem 3. A point (u:0) extends the generalized product cap (Theorem 2) if and only if (0:u) extends all affine caps $(1:A_i)$.

Proof. (u:0) is not an extension point if and only if we have a relation

$$(u,0) = \lambda(a,b) + \lambda'(a',b').$$

We must have $b = b' \in B_i$ for some i and $\lambda + \lambda' = 0$, equivalently $u = \lambda(a - a')$, where $a, a' \in A_i$ for some i. This is precisely the condition that (0:u) is not an extension point of $(1:A_i)$.

We see that in the situation of Theorem 3 the generalization of the product construction presents no advantage, as we get caps of same size with the ordinary product construction (Theorem 1) by choosing $A_1 = \cdots = A_c$. Based on Theorem 1, Theorem 3 leads to a generalization of the product construction, which we proved in [2]. An application to ovoids yields Segre's recursive construction [14].

Consider now points (u:v), where $v \neq 0$. Assume also $u \neq 0$. Such a point is not an extension point if and only if there is a relation

$$(u,v) = \lambda(a,b) + \lambda'(a',b')$$

The following strategy will make sure this cannot happen:

- Choose $u \neq 0$ and the A_i such that $\langle u \rangle \notin \langle A_i \rangle$ for all i and such that for all $a \in A_i$, $a' \in A_j$, $i \neq j$, $\langle a \rangle \neq \langle a' \rangle$, the points $\langle u \rangle$, $\langle a \rangle$, $\langle a' \rangle$ are not collinear. In the above relation this forces $\{a, a'\} \subseteq A_i$ for some i.
- Choose $v \neq 0$ such that $\langle v \rangle \notin \langle B \rangle$ and $\langle B_i \rangle \cup \{\langle v \rangle\}$ is a cap for all i.

If these conditions are satisfied, then (u:v) is an extension point. The first condition will be easier to satisfy for a small number of components (small c), the second condition is easier to satisfy when c is large. Let now $A_0 \subset AG(n,q) \setminus \{0\}$ be a cap and $B_0 \subset \mathbb{F}_q^{m+1}$ a set of representatives of a cap such that (u:v) satisfies the conditions above for all $u \in A_0$, $v \in B_0$. Then $(A_0:B_0)$ is a cap by Theorem 1. We want the union of the generalized product cap and $(A_0:B_0)$ to be a cap. It remains to make sure that two different points of $(A_0:B_0)$ can never be collinear with a point from the generalized product cap. A sufficient condition is that for every $i \neq 0$ no two different points of $\langle A_0 \rangle$ are collinear with a point from $\langle A_i \rangle$. This motivates the following definition:

Definition 4. Let $A_i \subset AG(n,q)$, i = 0, ..., c, be caps, where $0 \notin A_i$. We say that $(A_0, \{A_i\}_{i=1}^c)$ satisfy property (E_L) if the following hold:

- (1) $\langle A_0 \rangle \cap \langle A_i \rangle = \emptyset$ for all i > 0,
- (2) If $a_i \in A_i$, then $\langle a_i \rangle$ is not collinear with two different points of $\langle A_0 \rangle$.
- (3) If $u \in A_0$, $a \in A_i$, $a' \in A_j$, $i \neq j$; i, j > 0, $\langle a \rangle \neq \langle a' \rangle$, then $\langle u \rangle$, $\langle a \rangle$, $\langle a' \rangle$ are not collinear.

Let $B \subset PG(m,q)$ be a system of representatives of a cap $\langle B \rangle \subset PG(m,q)$, partitioned in the form $B = B_1 \cup \cdots \cup B_c$, and $B_0 \subset PG(m,q)$ a system of representatives of a cap $\langle B_0 \rangle$, which is disjoint from $\langle B \rangle$ and such that $\langle B_i \rangle \cup \{\langle v \rangle\}$ is a cap for all i > 0 and all $v \in B_0$. We say that $(B_0, \{B_i\}_{i=1}^c)$ satisfy property (E_B) .

Observe that it can happen that two different elements $u \neq u'$ of A_0 are scalar multiples of each other and therefore give rise to the same point $\langle u \rangle = \langle u' \rangle \in PG(n-1,q)$. Note also that $\langle A_0 \rangle$ need not be a cap in PG(n-1,q). We have proved the following above:

Theorem 5. Let $0 \notin A_i \subset AG(n,q)$, $i=0,1,\ldots,c$ be caps such that (E_L) is satisfied. Let $B_0, B \subset \mathbb{F}_q^{m+1}$ be systems of representatives of caps, $B=B_1 \cup \cdots \cup B_c$, satisfying (E_R) . Then $K=\bigcup_{i=0}^c (A_i:B_i) \subset PG(n+m,q)$ is a cap. If both $\langle B_0 \rangle$ and $\langle B \rangle$ are contained in AG(m,q) (equivalently: avoiding a hyperplane $H \subset PG(m,q)$) or the A_i are avoiding a hyperplane of AG(n,q) (different from the one at infinity), then $K \subset AG(n+m,q)$.

It is a strength of Theorem 5 that the components can be constructed separately. The cap constructed in Theorem 5 has $\sum_{i=0}^{c} |A_i| |B_i|$ points. If all A_i , i > 0, have equal size |A| this simplifies to $|A_0| |B_0| + |A| |B|$.

3 The case of the doubled Hill cap

Particularly fruitful applications of Theorem 5 are obtained when q=3, n=6 and A_1 , A_2 are two versions of the doubled Hill cap.

Definition 6. Consider the following subsets of \mathbb{F}_3^6 : D consists of the weight 3 vectors whose supports form the blocks of a fixed 2-(6,3,2) design, D' consists of the remaining vectors of weight 3. Let R be the vectors of weight 6 with an even number of entries 2 and R' the remaining vectors of weight 6. Also, A_0 consists of the vectors of weight 1. Finally

$$H = D \cup R$$
 and $H' = D' \cup R$.

Then both H and H' are versions of the doubled Hill cap [4, 1] (a 112-cap in AG(6,3)). We use $A_1 = H$, $A_2 = H'$. Observe $|A_1 \cap A_2| = 32$.

Lemma 7.
$$H + H' = \mathbb{F}_3^6 \setminus A_0$$

Proof. It is in fact clear that elements of weight 1 are not in D+R or D'+R or D+D'. A routine check shows that all other elements have one of these forms. \blacksquare

Observe that A_0 itself is a doubled cap and hence a 12-cap in AG(6,3). We can use A_0 in Theorem 5. It remains to find caps $\langle B \rangle$ in PG(m,q) or in AG(m,q), to partition them into two suitable parts and to find sets B_0 .

The smallest case is m = 1. Both B_1 and B_2 consist of one point, B_0 has one element in the affine case, two elements in the projective case. Theorem 5 yields a 236-cap in AG(7,3) (see [1]) and a 248-cap in PG(7,3) (see [4]).

Consider case m=3. We wish to partition the ovoid into two parts. Describe the field $I\!\!F_9$ by the polynomial X^2-X-1 , in other words $I\!\!F_9=I\!\!F_3(\epsilon)$, where $\epsilon^2=\epsilon+1$. Represent the affine points of the ovoid as (x:N(x):1), where $x\in I\!\!F_9$ and $N(x)=x^4\in I\!\!F_3$. Let $Q=\{\pm 1,\pm \epsilon^2\}$ (the squares) and $N=\{\pm \epsilon,\pm (\epsilon-1)\}$ (the nonsquares in $I\!\!F_9$). The affine points of the ovoid therefore have the forms (0:0:1), (Q:1:1), (N:2:1), the point at infinity is (0:1:0) (here the first coordinate represents two coordinates). Choose

$$B_1 = \{(0,0,1)\} \cup \{(Q,1,1)\}$$
 and $B_2 = \{(0,1,0)\} \cup \{(N,2,1)\}$

It is easy to see that the points which form extensions both of $\langle B_1 \rangle$ and of $\langle B_2 \rangle$ are the eight points of the form

$$(Q:0:1)$$
 and $(N:1:0)$

These extension points form an 8-cap. Theorem 5 yields a cap of size $112 \cdot 10 + 12 \cdot 8 = 1216$ in PG(9,3).

Here is an application when m=5. We choose B to be a set of representatives of the Hill cap, partitioned such that $\langle B_1 \rangle = \langle R \rangle$ and $\langle B_2 \rangle = \langle D \rangle$. It is clear that the 16 point from $\langle R' \rangle$ form an extension cap of $\langle B_1 \rangle$ and of $\langle B_2 \rangle$. This yields a cap of size $112 \cdot 56 + 12 \cdot 16 = 6464$ in PG(11,3).

4 Recursive constructions

Next we give a recursive construction for caps which satisfy (E_L) .

Definition 8. Let $A \subset \mathbb{F}_q^n = AG(n,q)$ and $A^l := (A,A,\ldots,A) \subset AG(nl,q)$. For $s = (s_1,\ldots,s_l) \in \{0,\ldots,c\}^l$ and $A_i \subset AG(n,q)$ define

$$s(A_0,\ldots,A_c):=(A_{s_1},\ldots,A_{s_l})\subset AG(ln,q).$$

For $S \subset \{0, \ldots, c\}^l$ define

$$S(A_0, \dots, A_c) := \bigcup_{s \in S} s(A_0, \dots, A_c)$$

Definition 9. We say $S \subset \{0, ..., c\}^l$ is a **capset** if the following are satisfied:

- (1) for every pair $s \neq s' \in S$ there is a coordinate i where $s_i = 0 \neq s'_i$ and a coordinate j where $s_j \neq 0 = s'_j$.
- (2) for every triple of distinct $s, s', s'' \in S$ there is a coordinate i such that $\{s_i, s'_i, s''_i\}$ is either $\{0, u, v\}$ or $\{0, 0, u\}$, with $u \neq v \in \{1, \dots, c\}$.

Let S be a capset. We say S is an **admissible set** if in addition $|S| \ge 2$, $l \ge 2$ and for every pair $s \ne s' \in S$ at least one of the two following properties is satisfied

- (3) there is a coordinate i where $\{s_i, s_i'\} = \{0, u\}$ and a coordinate j where $\{s_j, s_j'\} = \{0, v\}$, with $u \neq v \in \{1, \ldots, c\}$, or
- (4) there is a coordinate i where $s_i = s'_i = 0$.

The motivation for Definition 9 is the following lemma:

Lemma 10. Let $(A_0, \{A_i\}_{i=1}^c)$ satisfy property (E_L) . If $S \subset \{0, \ldots, c\}^l$ is a capset then $S(A_0, \ldots, A_c)$ is a cap in $AG(\ln q)$.

If S is an admissible set, then $(S(A_0, ..., A_c), \{A_i^l\}_{i=1}^c)$ satisfies property (E_L) .

If ν_i is the frequency of the entry i in s then $s(A_0, \ldots, A_c)$ contains $\prod_i |A_i|^{\nu_i}$ points. In our examples we will have the situation that all $|A_i| = N$ for i > 0 and all $s \in S$ have equal weight w. In this case the number of points in $S(A_0, \ldots, A_c)$ is $|S|N^w|A_0|^{l-w}$.

Proof. Assume S is a capset. Theorem 1 shows that $s(A_0, \ldots, A_c)$ is a cap for all s. Let $s, s' \in S$, $s \neq s'$. We want to show that the union $s(A_0, \ldots, A_c) \cup s'(A_0, \ldots, A_c)$ of two blocks is a cap. Assume without restriction that two points from $s(A_0, \ldots, A_c)$ are collinear with a point from $s'(A_0, \ldots, A_c)$. By Property (1) there is a coordinate section where each of the points from $s(A_0, \ldots, A_c)$ projects to an element from A_0 and the third point projects to an element from A_i for some $i \neq 0$. This means there exist nonzero coefficients $\lambda_1, \lambda_2, \lambda_3, \sum_{i=1}^3 \lambda_i = 0$, and elements $a_0, a'_0 \in A_0$, $a_i \in A_i$ such that $\lambda_1 a_0 + \lambda_2 a'_0 + \lambda_3 a_i = 0$. If $\langle a_0 \rangle = \langle a'_0 \rangle$ then $(E_L(1))$ yields a contradiction, $(E_L(2))$ yields a contradiction if $\langle a_0 \rangle \neq \langle a'_0 \rangle$.

Likewise, Property (2) shows that the union of three blocks is a cap, in the first alternative by using $(E_L(1))$ or $(E_L(3))$, making use of $(E_L(1))$ or $(E_L(2))$ in the second alternative.

Assume now S is an admissible set. We show that condition (E_L) is satisfied.

 $(E_L(1))$ follows from (1), as for every $s \in S$ there is a coordinate i such that $s_i = 0$, by using $(E_L(1))$ of $(A_0, \{A_i\}_{i=1}^c)$.

 $(E_L(2))$: Assume $\langle a \rangle$, $a \in A_i^l$, $i \neq 0$ is collinear with $\langle x \rangle$, $x \in s(A_0, \ldots, A_c)$ and $\langle y \rangle$, $y \in s'(A_0, \ldots, A_c)$. If s = s', a coordinate where $s_i = 0$ yields a contradiction because of $(E_L(1))$ or $(E_L(2))$. If $s \neq s'$, we use admissibility. In case of (3) use $(E_L(1))$ or $(E_L(3))$, in case of (4) use $(E_L(1))$ or $(E_L(2))$ to obtain a contradiction.

 $(E_L(3))$: Properties $(E_L(1))$ and $(E_L(3))$ of $(A_0, \{A_i\}_{i=1}^c)$ show that points $\langle a \rangle, \langle a' \rangle, \langle x \rangle$ cannot be collinear when $a \in A_i^l$, $a' \in A_j^l$ for $i \neq j$; $i, j \neq 0$ and $x \in s(A_0, \ldots, A_c)$, $s \in S$ as there is a coordinate i where $s_i = 0$.

Lemma 10 can be generalized in an obvious way, using different caps $(A_0^{(j)}, \{A_i^{(j)}\}_{i=1}^c) \subset AG(n_j, q)$ for each coordinate section $j, 1 \leq j \leq l$. We will not make use of this generalization here.

The following lemma is obvious:

Lemma 11. Let S be a capset, let $(A_0, \{A_i\}_{i=1}^c)$ satisfy property (E_L) and $\Delta = A_i \cap A_j$, $i \neq j$. Then $S(A_0, \ldots, A_c) \cup \Delta^l$ is a cap in AG(ln, q).

Now it is high time to give some examples of capsets and admissible sets.

Definition 12. Denote by $I_c(l,t)$ an admissible set in $\{0,\ldots,c\}^l$ consisting of $\binom{l}{t}$ vectors of weight l-t and by $\tilde{I}_c(l,t)$ a capset of this type.

Lemma 13. There exists an $I_c(l, c-1)$ for all l > c.

Proof. Define this set of vectors as the $\binom{l}{c-1}$ vectors of weight l-c+1 with entries i+1 between the i-th and i+1-th zero (if any) and with entries 1 before the first zero, entry c after the last zero, if any.

As all vectors have different support, condition (1) of Definition 9 is automatically fulfilled. Now consider condition (2). Consider three different vectors s, s', s'' of $I_c(l, c-1)$. We can assume that there is no coordinate i with $\{s_i, s'_i, s''_i\} = \{0, 0, u\}$. As the vectors have different support there is a first coordinate i where exactly one of the s_i , s'_i , s''_i is zero. We may assume that $s_i = 0$. Let j be the first coordinate where $s_j \neq 0$ and s'_j or s''_j is zero. We may assume that $s'_j = 0$. So there are more zeroes in s up to coordinate j than in s''. It follows $s_j > s''_j > 0$, hence condition (2) is satisfied.

Let s, s' be two different vectors from our set. Assume that condition (4) is not satisfied. In particular there is no coordinate i with $s_i = s'_i = 0$. Let s be the vector with the smallest coordinate where a zero appears, let this coordinate be i. Let j be the first coordinate where a zero appears in s'. We have $s'_i = 1$ and $s_j > 1$, so condition (3) is satisfied.

The first series of Calderbank and Fishburn [1] is obtained applying Lemma 11 with A_0 , A_1 , A_2 from the doubled Hill cap as introduced in Section 3, and $S = I_2(l, 1)$.

The following vectors $s = (s_1, \ldots, s_{10})$ and their cyclic shifts form an $\tilde{I}_2(10, 5)$. Observe that the orbit of the last vector has only length 2.

```
(0,0,0,0,0,1,1,1,1,1)
                        (0,0,0,0,1,0,1,1,1,2)
(0,0,0,0,1,2,0,1,1,2)
                        (0,0,0,0,1,2,2,0,1,2)
(0,0,0,0,1,2,2,2,0,2)
                        (0,0,0,1,0,0,1,1,1,2)
(0,0,0,1,0,2,0,1,1,2)
                        (0,0,0,2,0,1,1,0,2,1)
(0,0,0,1,0,2,2,2,0,1)
                        (0,0,0,2,1,0,0,1,1,2)
(0,0,0,2,1,0,2,0,1,2)
                        (0,0,0,1,2,0,1,1,0,2)
(0,0,0,2,1,1,0,0,2,2)
                        (0,0,0,1,2,2,0,2,0,2)
(0,0,0,1,2,2,1,0,0,2)
                        (0,0,2,0,0,2,0,1,1,1)
(0,0,1,0,0,2,1,0,1,2)
                        (0,0,1,0,0,2,1,2,0,1)
(0,0,2,0,2,0,0,2,1,2)
                        (0,0,2,0,1,0,1,0,1,2)
(0,0,1,0,2,0,1,1,0,2)
                        (0,0,2,0,2,2,0,0,1,2)
(0,0,2,0,2,1,0,2,0,1)
                        (0,0,2,1,0,0,2,2,0,2)
                        (0, 2, 0, 2, 0, 2, 0, 2, 0, 2)
(0,0,1,1,0,2,0,2,0,1)
```

Also, $I_2(9,2)$, $I_2(10,3)$, $I_2(9,4)$, $I_2(9,5)$, $I_2(10,6)$ and $\tilde{I}_2(11,2)$ were found by computer and are available on the author's homepage [15].

5 Asymptotic results

It follows from Theorem 1 that $\mu(q) \geq \log_q(|A|)/n$ for every cap A in AG(n,q). In the ternary case the lower bound from Calderbank and Fishburn [1] is $\mu(3) \geq 0.7218...$ It is based on a cap in AG(13500,3) (the doubled Hill cap yields $\mu(3) \geq 0.7158...$)

Our first asymptotic improvement happens in AG(62,3). Apply Lemma10 with n = 6, c = 2, where A_0 , A_1 , A_2 are derived from the doubled Hill cap in AG(6,3) as in Section 3 (recall $|A_1| = |A_2| = 112$, $|A_0| = 12$). As admissible

set choose $I_2(l,1)$ (see Lemma 13). The result is a cap in AG(6l,3). Apply Theorem 5 with n=6l, m=1, where the B_i are from the projective case as in Section 3 ($|B_1|=|B_2|=1$, $|B_0|=2$). The result is a cap in PG(6l+1,3). The final result is obtained by applying the doubling construction. The asymptotic expression has its maximum at l=10. We have a cap in AG(62,3). The number of its points is $2*(2*112^{10}+2*10*112^9*12)$, yielding $\mu(3) \geq 0.723779...$

The use of different values of m as in Section 3 produces further examples of good caps but no asymptotic improvement.

Let us apply Lemma 10 recursively. Start from the admissible set $S \subset \{0, 1, \ldots, c\}^l$. For simplicity assume $|A_i| = N$ for all $i \neq 0$, $|A_0| = M$ and that all elements of S have the same weight $l - s_0$. It follows from Lemma 10 that the family of caps $(S(A_0, \ldots, A_c), \{A_i^l\}_{i=1}^c)$ in AG(ln, q) satisfies property (E_L) . Apply Lemma 10 again, with a capset $T \subset \{0, 1, \ldots, c\}^k$, all of whose elements have weight $k - t_0$. The result is a cap in AG(kln, q), which we denote for simplicity as T(S(A)), where $A = (A_0, \{A_i\}_{i=1}^c)$. We have

$$|T(S(A))| = |T| \cdot |S|^{t_0} N^{lk - t_0 s_0} M^{s_0 t_0}.$$

In our favorite ternary case $(n=6,\ c=2,\ N=112,\ M=12)$ we use $S=I_2(8,1)$ and T the $\tilde{I}_2(10,5)$ constructed in Section 4. Finally we can apply Lemma 11 with $\Delta=A_1^l\cap A_2^l,\ |\Delta^k|=32^{kl}=32^{80}$. We have constructed a cap in AG(480,3) with

$$32^{80} + 8^5 \binom{10}{5} 112^{75} * 12^5$$

points. This yields $\mu(3) \ge 0.724851...$

Finally we discuss which asymptotic results are obtainable from Lemma 10 provided all needed $\tilde{I}_c(l,t)$ existed. With the above notation we have $|\tilde{I}_c(l,t)(A_0,\ldots,A_c)| = \binom{l}{t}N^{l-t}M^t$. Using the well known asymptotic relation $2^{lh(t/l)} \sim \binom{l}{t}$ between the binary entropy function $h(x) := -x \log_2(x) - (1-x) \log_2(1-x)$ and the binomial coefficients (see e.g. [11]), we see that we would asymptotically get

$$\mu(q) \ge \frac{1}{n} (h(t/l) \log_q(2) + ((l-t)/l) \log_q(N) + t/l \log_q(M)).$$

The usual analytic procedure shows that at $l = t \frac{N+M}{M}$ we obtain the maximum and so would have:

$$\mu(q) \ge \frac{\log_q(N+M)}{n}.$$

For our ternary example it would therefore be possible to reach $\mu(3) \ge \frac{\log_3(124)}{6} = 0.731268...$ if all $\tilde{I}_c((10\frac{1}{3})t, t)$ would exist.

This leaves us with the interesting research problem to construct $\tilde{I}_2(l,t)$, or at least large subsets of $\tilde{I}_2(l,t)$, in range of $l=(10\frac{1}{3})t$ for large t.

References

- [1] A.R. Calderbank and P.C. Fishburn: Maximal three-independent subsets of $\{0,1,2\}^n$, Designs, Codes and Cryptography 4 (1994),203–211.
- [2] Y.Edel and J.Bierbrauer: Recursive constructions for large caps, Bulletin of the Belgian Mathematical Society Simon Stevin **6**(1999), 249–258.
- [3] Y.Edel and J.Bierbrauer: 41 is the largest size of a cap in PG(4,4), Designs, Codes and Cryptography 16 (1999),151–160.
- [4] Y.Edel and J.Bierbrauer: Large caps in small spaces, Designs, Codes and Cryptography 23 (2001),197–212.
- [5] Y.Edel, S.Ferret, I.Landjev and L.Storme: The classification of the largest caps in AG(5,3), Journal of Combinatorial Theory A, to appear.
- [6] David Glynn and Te Tari Tatau: A 126-cap of PG(5,4) and its corresponding [126,6,88]-code, Utilitas Mathematica **55** (1999), 201–210.
- [7] R.Hill: On the largest size of cap in $S_{5,3}$, Atti Accad. Naz. Lincei Rendiconti $\mathbf{54}(1973),378-384$.
- [8] J.W.P. Hirschfeld and L.Storme: The packing problem in statistics, coding theory and finite projective spaces, Journal of Statistical Planning and Inference 72 (1998),355–380.
- [9] J.W.P. Hirschfeld and L.Storme: The packing problem in statistics, coding theory and finite projective spaces, proceedings of the Fourth Isle of Thorns conference (July 16-21, 2000), 201–246.
- [10] J.W.P. Hirschfeld and J.A. Thas, *General Galois Geometries*, Oxford University Press, Oxford, 1991.

- [11] F.J.McWilliams, N.J.Sloane: *The Theory of Error-Correcting Codes*, North-Holland, Amsterdam 1977.
- [12] A.C. Mukhopadhyay: Lower bounds on $m_t(r, s)$, Journal of Combinatorial Theory A **25**(1978),1–13.
- [13] G.Pellegrino: Sul massimo ordine delle calotte in $S_{4,3}$, Matematiche (Catania)25(1970),1–9.
- [14] B. Segre: Le geometrie di Galois, Ann.Mat.Pura Appl.48 (1959),1–97.
- [15] Yves Edel's homepage: http://www.mathi.uni-heidelberg.de/~yves