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Abstract

In [5] an extension construction of (n+ 1)-dimensional dual hyperovals
using n-dimensional bilinear dual hyperovals was introduced. Related to
this construction, is a construction of APN functions in dimension n + 1
using two APN functions in dimension n. In this paper we show that
the isomorphism problem for the (n + 1)-dimensional extensions can be
reduced to the isomorphism problem of the initial n-dimensional objects.
The automorphism problem can be reduced in an analogous way.

1 Introduction

In [5] we introduced a construction that transforms any symmetric, bilinear n-
dimensional dual hyperoval over Fy into an (n + 1)-dimensional dual hyperoval
over Fo. Taniguchi [7] shows that this construction can be generalized in a
straightforward way to any bilinear n-dimensional dual hyperoval over Fy,. He
uses this construction to provide new examples of simply connected DHOs — we
use the abbreviation DHO for ”dimensional dual hyperoval”. We also showed
that given an APN function defined in an n-dimensional Fo-space one can define
an APN function in an (n + 1)-dimensional Fo-space. This construction can be
easily generalized to a construction using two (not necessarily different) APN
functions instead of one.

In [5] these extension constructions were considered in detail for the special
case of DHOs that are extensions of symmetric DHOs, and for the special case of
APN functions that are extensions of one quadratic APN function. This led to
DHOs and APN functions with many translation groups. In [5] the isomorphism
and automorphism problem for the dimensional dual hyperovals and the APN
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functions in the special cases were also treated. In the present paper we discuss
these questions without the restrictions made in [5].

In the next section we introduce basic notions and describe the extension
constructions. These constructions guarantee, for bilinear DHOs as well as for
quadratic APN functions, the existence of a large elementary abelian subgroup
N of the automorphism group, which will be crucial for the further investigation
of the extensions.

In Section 3 we introduce the notion of an extension group of a DHO or an
APN function. The existence of an extension group characterizes those DHOs or
APN functions that are extensions. Indeed it will turn out later that extension
groups are just conjugates of the group N introduced in Section 2. We also
present a detailed study of the embedding of the group N in the automorphism
group.

In Section 4 we consider the isomorphism problem. Theorems 4.1 and 4.3
provide the complete answer. We characterize bilinear extensions of bilinear
DHOs (Theorem 4.2) and quadratic extensions of APN functions (Theorem 4.4).
Finally we show that the extension construction is the source of large numbers
of inequivalent APN functions of degree three (see Proposition 4.8 and Exam-
ple 4.9).

In Section 5 it is shown that any two extension groups of a DHO or an APN
function have the same size of the intersection and that they are conjugate in
the group, which they generate.

In Section 6 we show that those DHOs or APN functions that have many
extension groups are obtained as multiple extensions and present examples with
this property. Moreover we give a direct construction of the k-fold extension,
for k > 2, as well as some of its automorphisms.

Automorphism groups are treated in Section 7 (Theorems 7.1 and 7.3). The
group theoretic notation follows standard texts such as [1]. A survey article on
dimensional dual hyperovals is Yoshiara [9].

2 Definitions, preliminary results, extensions

We start with with dimensional dual hyperovals

2.1 Extensions of bilinear DHOs

Definitions and preliminary results. (a) A set S of n-dimensional subspaces
of a finite dimensional Fy-vector space U is called a dual hyperoval of rank n'
— we use the symbol DHO as an abbreviation — if |§| = 2", dimS NS =1
and SN S 'NS" =0 for three different 5,5",5” € S. We call (S | S € S) the
ambient space of the DHO and say S is ambient in U or ambient in its defining
space, if U coincides with the ambient space. Of course, for properties of a
DHO only the ambient space is important, however for proof theoretic purposes

1One also speaks of dimensional dual hyperovals. However the notion ”dimension” is not
used uniformly, compare for instance [5] and [9]



overspaces also come into play. If Y is a subspace of U, such that Y &S =U
for all S € S, then the DHO splits over Y. Two DHOs are isomorphic, if there
exists an isomorphism of the ambient spaces that maps one DHO onto the other.
An automorphism is an isomorphism of a DHO ambient in its defining space
on itself. The automorphisms form the automorphism group of the DHO. A
subgroup T of the automorphism group of S is a translation group, if T acts
regularly on S, such that the DHO splits over Cy(T) ={u € U |ur =u, 7 €
T}.

(b) Let X,Y be finite dimensional Fo-spaces with dim X = n, and let § :
X — Hom(X,Y') be a monomorphism, such that

Sg={Selec X}, S.={(z,z8(e))|zeX},

isa DHO in U = X @Y. Then Sp is called a bilinear DHO (i.e. the mapping
X x X 35 (z,e) — zf(e) € Y is bilinear). We also say that 5 defines Sg.
The elements 7. € GL(U), e € X, satisfying (z,y)7. = (z,y + z8(e)) are
automorphisms, and form a translation group. Conversely, it is shown in [5],
that a DHO ambient in its defining space with a translation group is always
bilinear. The mapping £° : X — Hom(X,Y), defined by x25°(e) = ef(z),
defines a bilinear DHO Sgo too, the DHO opposite to Sg. We call 3 or Sg
symmetric, if § = £°.

(¢) Let 8 : X — Hom(X,Y) and 8’ : X — Hom(X,Y) define DHOs. A
triple (A, i, p), where A\, u € GL(X), p € GL(Y) is called an isotopism from (3
to B, if Ao’ (ep) = B(e)p for all e € X. In this case we write 8 ~ (. Isotopisms
from B to B are called autotopisms; they form a group in the obvious manner,
the autotopism group of B. If (A, u,p) is an autotopism of 8, then (u, A, p) is
an autotopism of 5°. Moreover, if (A, u, p) is an isotopism from S to ', then
diag(X,p) : U — U is an isomorphism from Sg onto S/, which maps S. € S
onto S¢,, € Spr. Here we use the following convention for the representation of
linear operators.

Convention. The space U = X @Y is identified with X x Y and elements in
a € GL(U) are written in the form

( 11 02 )

21 22

with a1 € End(X), a2 € Hom(X,Y), a2 € End(Y), and a; € Hom(Y, X),
ie. (z,y)a = (xa11 + yoe1, xaia + yass). This convention will also be gener-

alized in the obvious way. From [5] we take the following, slightly generalized
construction (see also [7]).

Theorem 2.1. Let X,Y be finite dimensional Fy-spaces, let f: X — Hom(X,Y')
define a bilinear DHO § = 8. Set X =Fo & X andY = X @Y. Foree X
define two subspaces of X @Y by

So,e = {(b,be,be + x, (be + z)B(e)) | (b,x) € X1,



S1.e = {(b,be + x,be, (be + x)B3°(e)) | (b,z) € X},

and set S =85 ={Sa. | (a,e) € X}. The following hold.

(a)
(b)

(c)

(d)

(¢)

The set S is a DHO in X @Y.
Foree X set

1 e 1 e
1 1 B°(e)
1 ple) | 1
1 1

Then Ny = {ng. | e € X}, a = 0,1, are elementary abelian 2-subgroups
of Aut(S). The group N, fizes all elements in Sy, = {Sae | € € X} and
it acts reqularly on Sq41. In particular, Soeni,f = So,et+f and Sqcno, s =
S1,eqf. Moreover, N = Ny x Ny is an elementary abelian group of order
X2

Let a = (X, i, p) be an autotopism of 3. Then u, = diag(1, u, A, p), is an
automorphism of S. The group Ly = {u, | o autotopism of 8} < Aut(S)}
is isomorphic to the autotopism group of 3.

Let ¢ = (A, p, p) be an isotopism from B to °. Then

p

is an automorphism of S which normalizes N and interchanges Sy and
S1.

X @Y is the ambient space of S if and only if X®Y is the ambient space
of S.

Proof. For assertions (a)-(d) the proof of [5, Thm. 5.1] carries over after replac-
ing equations of the form z5(e) = ef(x) by x8(e) = e°(x) where necessary.

For (e) we first we observe that S = Sg and S° = Sgo have the same ambient
spaces since

(8) = ((«,0),(0,z(e)) | w, e € X) = ((2,0),(0,e6°(x)) | z,e € X) = (5).

In particular (S) = (S°) = X @ Yp, where Yy = >y Im 3(e). For the ambient
space of S we have (S) = ((1,0,0,0), (0,0, z,z3(e)), (0,z,0,z5%e)) | z,e € X),

which shows (S) =F, ® X ® X & Yp. This implies assertion (e). O

Definition. We call the DHO S of Theorem 2.1 the extension of S.



Remark 2.2. Let 1 # v € N. Then we haverk (v+1) > nand if 1 # v € NgU
N; then even rk (v 4+ 1) = n holds. Here we use that rk 3(e) =1k °(e) =n —1
for 0 #e € X.

Notation. With the notation of the preceding theorem we set

_ LO<T>7 ﬂ'\’ﬂoa
L—{ Lo, B4

Proposition 2.3. Let 8 : X — Hom(X,Y) and 8 : X — Hom(X,Y) define
bilinear DHOs. The following hold.

(a) Sg is isomorphic to Sgo.
(b) Let B be isotopic to 3. Then Sg are Sg isomorphic.

(c) Let~y define a symmetric DHO and assume that B is isotopic to . Then
Sp is a bilinear DHO.

Proof. (a) The operator

defines an isomorphism of Sg onto Sgo.

(b) Let (A, i1, p) be an isotopism from 3 onto 3'. Define a = diag(1, u, A, p).
A typical element (a, ae, (ae + x)B(e)) of Sy . (as a subspace of Sg) is mapped
onto

(a,aep, (ae + x)N, (ae + x)p) = (a,aeu, (ae + )\, (aex) NG’ (ep)),
which is an element in Sy ., (as a subspace of Sg/). Similarly,
(o 35 > Sl,e — Sl,eA (S 35/,

which shows the claim.

(c) By (b) we have S ~ S.,. Now [5, Theorem 3.2] completes the proof.
O

2.2 Extensions of APN functions

Definitions and preliminary results. (a) Let X and Y be two finite dimen-
sional Fo-spaces and let f : X — Y be a function. We call f normed if f(0) =0
and the set Sy = {(z, f(z)) | € X} CU = X @Y is called the graph of f.
The space (Sy) is the ambient space of f. Usually (z+y | z,y € Sy) is a proper
subspace of the ambient space, but if f is normed both spaces coincide. We say



X @Y is ambient to f or f is ambient in its defining space, if f is normed and
X @Y is the ambient space. Mostly we will consider normed functions that
are ambient in their defining space, however for proof theoretic purposes also
non-ambient functions also come into play.

Two functions f; : X — Y are equivalent, if there exists an affine transfor-
mation I' of X @ Y with Sy, = S, I'. We also say that I' is an isomorphism
from fy to f1. An automorphism is an isomorphism of a function on itself. The
automorphisms form the autornorphism group Aut(f) of the function f. With
respect to automorphism groups we will usually only consider functions that are
ambient in their defining space. Then the automorphism group acts faithfully
on the graph Sy (see [5, Sec. 2]).

A function f: X — Y is an APN function, if for each 0 # ¢ € X and each
yo € Y the equation f(x + zg) + f(z) = yo has at most two solutions. Note
that if = is one solution, then x 4+ x( is the second solution. We call dim X the
rank of the APN function. If not otherwise stated, we will always assume, that
APN functions are normed. From [3, Thm. 5] we take:

Lemma 2.4. (Four-sum-condition) The normed function f : X —Y is APN,
if and only if for every four every quadruple si,...,54 € S§ we have s1 + s2 +
s34+ 84 #0.

We denote elements of AGL(U) by symbols 7 = 7 + ¢, with 7 € GL(U),
c, €U if
utT =ur +c., u€Ul.

We call the linear transformation 7 the linear part of 7 and ¢, the translation
part. By [5, Lemma 2.1] we know that for an APN function f, with U ambient
to f, the restriction of the epimorphism ¢ : AGL(U) — GL(U), T — 7, to the
group Aut(f), is a group monomorphism. By A(f) we denote the image of ¢
of Aut(f) and call it the linear part of the automorphism group.

In the sequel we will frequently use the isomorphism

Aut(f) = A(f)

and switch back and forth between these groups whenever it is con-
venient.
For a function f: X — Y we associate a mapping 8f: X x X =Y by

Br(x,a") = f(x +2) + f(z) + f(z') + £(0)

and call f quadratic, if and only if ff is a (symmetric) bilinear mapping. If
[ is quadratic, we also identify 8 with an element of Hom(X, Hom(X,Y")) by
defining

We recall a basic connection between quadratic APN functions and alternating
DHOs (see [5, Thm. 2.4], [6], or [10]): If f is a quadratic (ambient) APN
function, then B¢ defines an alternating DHO, and if 3 defines an alternating
DHO, then there exists a quadratic APN function, such that 8 = ;.



(b) Let f; : X — Y, i = 0,1, be two functions. A triple (A, p,~), where
A € GL(X), p € GL(Y), and v € Hom(X,Y) is called an isotopism from fy to
fi,if
fi(@d) = fo(z)p + 2v;

we then write fo ~ fi. Then

qb:</\ Z)eGL(U)

is an isomorphism from Sy, to Sy,. Isotopisms from f to f are called auto-
topisms; they form a group in the obvious manner, Autop(f), the autotopism
group of f. Again we will only consider autotopisms of functions ambient in
their defining spaces.

(c) Let U be an Fao-space, Y a subspace and ¢,¢ € GL(U) that fix Y. We
say that ¢ and 1 are linked (with respect toY ), if oy = ¢y. Let U = X @Y, let
fi: X = Y,0<i<3, be APN functions, and let ¢ : fo — fo and ¢' : f1 — f3
be isotopisms. Then we say that the pair (fo, f1) is isotopically linked to the pair
(fa, f3), if ¢ and ¢’ are linked (with respect to Y). In the case where fo = f;
and f3 = fo we simply say that fy and f1 are isotopically linked.

From [5] we take (with minimal changes) the following construction.

Theorem 2.5. Let X,Y be finite dimensional Fo-spaces and let f; : X =Y,
i = 0,1, be two APN functions. Set X = Fo® X and Y = X @Y. Then
F=Fy 5 X =Y defined by

F(a,z) = (az, (a + 1) fo(z) + afi(z))

is an APN function. Moreover, (Sp) = X @Y, if and only if (Sp,) = X ®Y;,
1=0,1, such that Y =Yy + Y7.

Proof. The APN property of F' has the same simple verification as in [5, Theo-
rem 5.3]. For the ambient spaces we observe that

(Sp)y=F2000000) + Wy + W,
with
Wo = {(07I707y) | (Z‘,y) € <Sfo>}7 Wi = {(O,I,l‘,y) | (Ivy) € <Sf1>}

Hence (Sp) = X @Y if and only if X C (Sy,) N (Sy,) and Y = ((Sp,) NY) +
(Sp)NY). =

Definition. We call the function FY, r, of Theorem 2.5 the extension of fy and
fi. If fi, i = 0,1, are ambient in X © Y, we also call Fy, r, fully ambient (in
XaY).

Usually we will only consider fully ambient extensions. However sometimes

we will also need to use extensions that are ambient in their defining space, but
not fully ambient.



Proposition 2.6. Let fo, f1 : X = Y be two APN functions. The following
hold.

(a) Fy, 1, is equivalent to Fy, g,.
(b) Letw;, i = 0,1, be affine operators from X toY. Then Fy, ¢, is equivalent
to Frytao, fr+a -

(¢) Let Fy, s, be quadratic. Then fo and fi are quadratic, By, = By, and
Fy, 1 is equivalent to Fy, ..

Proof. (a) The operator 7 € AGL(X @ Y) defined by
1
T=T+c¢, T= , ¢r =(1,0,0,0),
1
interchanges the graphs of Fy, ¢, and FY, .

(b) Let «; be the linear part of @; and a; its translation part. Set

1 ap —+ aq
1 (651

1 ap+ao;
1

y Cr = (anaoaal)a

T=T+Cr, T=

A typical element (a, z, ax, afo(x)+(a+1) fi(z)) of the graph of Fy, s, is mapped
onto

(a,z,az,a(fo(x) + zag + ag) + (@ + 1)(f1(x) + zaq1 + aq)),
which is an typical element of the graph of Fi &, f,+a, -

(c) Set B = Br, , , Bo =By, and 1 = By,. A computation shows that
B((a,z), (b,2")) = (a2’ + bz, (a + b+ 1)Bo(z,2") + (a + b)B1(z,2)).

Set A = B((a,x),(by + b1, 20 + 1)) + B((a, z), (bo, z0)) + B((a,z), (b1, 1)),
which is by assumption 0 for all (a,x), (b, xo), (b1,21). Now A = (0,Q + P)
with
Q = (a+bo+b1 +1)Bo(x, 10 +21) + (a+bo + 1) Bo(x, z0) + (a+ by + 1) Bo(z, 21)
and

P = (a+by+b1)Bi(z,z0 + x1) + (a + bo) B1(x, x0) + (a + b1)B1(x, x1).

Setting a = by = b1 = 0 shows that [y is bilinear and setting a = 1, by = by =0
shows that 3; is bilinear too. This shows that

A = (0,b0(Bo(z,x0) + B1(x,20)) + b1 (Bo(x, 21) + B1(z,21)))

and By = 31 follows. Assume first that fy and f; are normed. By [5, Thm. 2.4]
we obtain f; = fo+« where @ € Hom(X,Y). Apply part (b) of this proposition.
In the general case we can apply part (b) of this proposition and reduce this
case to the normed case. O



A transformation and some automorphisms. Let F = Fp r : X - Y
be the extension of two normed, APN functions f; : X — Y and assume that F
is ambient in X ® Y. We apply the linear transformation

1

1

to the graph of F'. Then S := Sp7 has a more symmetric appearance S = SoUS;
with

SO = {(0,1’,0,f0($)) ‘ T € X}v Sl = {(1,0,$,f1($)) | T € X}

Suppose that ¢ = < A Z > € Autop(fp) and ¢’ = ( H [5) ) € Autop(f)

is a pair of linked autotopisms. Set

Qg0 =

=
D > 2

Then ®4 4 is an automorphism of F', which fixes Sy and S;. Also

Lo ={®s,4 | ¢ € Autop(fo), ¢’ € Autop(f1), ¢ linked to ¢’}
is obviously a subgroup Ly < Aut(F) N A(F).

Finally assume that there exist linked isotopisms ¢ = ( A Z ) from fy
to f1 and ¢’ = ( H f) ) from fi to fg, i.e. fo and fy are isotopically linked.
Define Wy 5 = Uy o + ¢y by

1

\Ij¢7¢/ = y G = (1303070)

=
D 2

Then @(MJ/ is an automorphism of F', which interchanges Sy and S;. If @%@/
is an automorphism to the linked pair ¢, ¢’ too, then

Voo 0We o = Pgop,¢op-

We set

T Ly =1Ly, if foand f; are not isotopically linkend,
Lo(Ws ), if fo and f are isotopically linkend.



Note that the definition of L is independent of the choice of W, 4.

We now assume in addition that f; and f; are quadratic. For i €
and e € X define m; ¢ = n;  + ¢; ¢, Where

1 e fi(e) 1 e goge))
1 1 e
no,e = 1 ,81(6) , N1e = 1 0 )
1 1

Bi = By, and coe =0, 1. = (0,¢€,0, fo(e)). Then m; . € Aut(F). The groups
N; ={m;. | e € X} are elementary abelian of order |X|. Moreover, N; fixes S;
pointwise and acts regularly on S;;1. The group N = Ng x N is elementary
abelian too. A routine verification shows that the group L normalizes N. The
two subgroups N, i = 0,1, are normalized by Lg too, while elements in L — Lg
interchange both groups under conjugation.

Remark 2.7. Let 1 # v € N. Then we haverk (v+1) > nand if 1 # v € NgU
Ny, then even rk (v +1) = n holds. Here we use that rk Sy(e) =tk fp(e) =n—1
for 0 #£e € X.

We add two observations on APN functions. Firstly we give an intrinsic
characterization for isotopic APN functions to be isotopically linked.

Lemma 2.8. Let fo, f1 : X = Y be two APN functions and let ¢ : fo — f1 be
an isotopism. The following are equivalent:

(a) There exists o € Autop(fo), such that ¢* and a are linked with respect to
Y.

(b) fo and f1 are isotopically linked.

Proof. (a)=-(b) Set p = ¢y and let ay = p?. Define ¢’ : f; — fo by ¢’ = ¢~ toa.
Then ¢} = p~1p?> = p and (b) follows.

(b)=(a) Let ¢ : f1 — fo be linked to ¢ i.e. p = ¢y = ¢ . Then we have
a=¢og¢ € Autop(fo) and p* = ay = ¢%.. O

Let f be a quadratic APN function and 5 = B¢ the associated bilinear form.
If f is not ambient in its defining space, the ambient space of f and the ambient
space of the DHO defined by £ can be different. However if f is ambient, such
unwanted side effects do not occur:

Lemma 2.9. Let X, Y be finite dimensional Fa-spaces.

(a) Let 8 : X — Hom(X,Y) be a monomorphism defining an alternating DHO
that is ambient in X @Y. Let f: X — Y be a quadratic APN function,
such that 8 = By. Then f is ambient in X @Y.

(b) Let f: X — Y be a quadratic APN function, such that f is ambient in
XoY. Set 8 =0 Then 8 : X — Hom(X,Y) is a monomorphism
defining an alternating DHO that is ambient in X @Y.

10



Proof. (a) By assumption z8(e) = f(z +¢e) + f(x) + f(e), z,e € X, which
shows that ) .y ImfB(e) €Y N(Sy). By assumption we have also X @Y =
(X(e) | e € X), where X(e) = {(z,z8(e)) | z € X}. As X = X(0), we get
Y =3 .cxImp(e) C (Sf). But then X C (Sy) too.

(b) Set Yo = > . cxImpB(e) €Y. We claim Y = Y, which in turn implies
the assertion. The DHO defined by S lies in X ¢ Yy. By [5, Thm. 2.4], there
exists a quadratic APN function g : X — Y, such that 3, = 8 = 3y and
f =g+ for some 6 € Hom(X,Y). Clearly, the DHO defined by S has the
ambient space X @Y} and by (a) this is the ambient space of g too. If we define
0 € GL(Xa8Y) by (z,y)0 = (z,2d + y), we see that (S;) = (Sy)d. Hence
dim X + dim Yy = dim(S,) = dim(Sy) = dim X + dimY. Thus ¥ =Y. O

3 Extension groups

Motivated by the properties of the group N of the last section we introduce the
notion of an extension group. We shall show that the existence of an extension
group characterizes extensions of bilinear DHOs and extensions of quadratic
APN functions (Theorem 3.2). The main result of this section (Theorem 3.6)
states that extension groups form a conjugacy class in the automorphism group
of the DHO (or the APN function) and that an extension group is weakly
closed in every Sylow 2-subgroup of the automorphism group, which contains
this extension group.

From now on we use the label (DHO) and speak of the DHO case, if we
work with a dual hyperoval. We use the label (APN) and speak of the APN
case, if we work with an APN function.

Definition. Let S C U be a DHO of rank n+1 over Fy or the graph of an APN
function F of rank n + 1 ambient in its defining space. Let E = (Ey, E1) be a
subgroup of Aut(S) (DHO) (or of A(F) (APN)). Set 7; = Fixs(F;) (DHO) and
T: = Fixs(E;) (APN) and set further V; = (SNS"|S,8 € 7,5 #S') (DHO)
and V; ={(x +y | z,y € T;) (APN), i =0,1. We call E a weak extension group
if:

(E1) S =Ty UT; is a partition and |T;| = 2" for ¢ = 0, 1.

(E2) E; (DHO) respectively E; (APN) acts regularly on 7;, {i,j} = {0,1}.

(E3) Set Cy(E) =Y. Then Vy + Vi +Y has codimension 1 in U and the
dimension (Vo + V1 +Y)/Y = 2n.

If, in addition,
(E4) Y =VynW;
holds, we call E' an extension group.

Remark 3.1. (a) Clearly, Ey and E; intersect trivially and the two groups
centralize each other, i.e. £ = Eg x E,. Also Vo N'Vi; CY, as E; centralizes

11



Vi. We justify the name “extension group” by proving the reconstruction result
Theorem 3.2 below. Note that the group N of the last section, which acted
on the extension of a DHO or the graph of two APN functions is indeed an
extension group in the case of a DHO. In the case of the extension FY, r, of two
quadratic APN functions f;, ¢ = 0,1, the group N is a weak extension group.
Moreover, N is actually an extension group if and only if Fy, r is fully ambient.
(b) In [5] we defined translation groups for DHOs and APN functions, which
lie ambient in their defining space. We need slight generalizations of the basic
results of translation groups in the non-ambient case. Let & be a DHO (not
necessarily ambient) in U. Let T be a subgroup of GL(U), such that (1) St = S,
T €T, (2) T acts regularly on S, and (3) DHO splits over Cy(T). We call T a
translation group of the DHO. Let S = Sy C U = X @Y be the graph of the
normed APN function f : X — Y (f not necessarily ambient in U = X @ Y).
Let T be a subgroup of AGL(U) and T its the linear part. We call T or T a
translation group if (1) T ~ T, (2) T acts regularly on S, and (3) S is a set of
coset representatives for Cy (T). If dimU/Cy(T') > 4, it is then not difficult to
show that in both cases the group T still satisfies Hypothesis A of [5, Section 3].
Then by [5, Thm. 3.1] T is elementary abelian and T has a quadratic action on
U. Also Theorems 3.2 and 3.5 of [5] are still true, i.e. DHOs with a translation
group are bilinear and APN functions with a translation group are quadratic.

Theorem 3.2. Let E be a weak extension group with S, U, etc. being as in the
definition, and assume in addition that n > 4. Then the weak extension group
E = Ey x E is elementary abelian of order 2°™. Moreover:

(a) (DHO) S is the extension of a bilinear DHO Sg in Vy of rank n and E is
an extension group. Moreover, V is the ambient space of Sg.

(b) (APN) S = Sp, where F' = Fy, y, is the extension of quadratic APN
functions fo and fi. Moreover, E is an extension group, if and only if F
is fully ambient.

Proof. (a) DHO cASE. Since V) + Vi + Y is a proper subspace, there exist
S; € Ti, i = 0,1, such that v € Vo + V4 + Y, where Sy N S1 = (v). As E acts
transitively on the pairs (5,5") € To x T1, we see SNS' € Vo +V; +Y for all
such pairs. So if {,j} = {0,1} and S € T, then

(snvi)-0= |J ((Sns)-0andS—(snVvy)= |J ((SnS)—0)
S'eTi—{5} €T

are partitions. As an immediate consequence we observe, that D; = {SNV; |
S eT;},i=0,1,is a DHO in V; and thus in V; + Y too.

Pick S € 7;, i = 0,1. Then SNY = ﬂTeEj(SﬁY)T - ﬂ-reEj ST =0,
{i,j} = {0,1}, by the basic properties of a DHO. Hence dim(V; +Y)/Y > n,
i=0,1, as dim SNV; = n. Then dim(Vo+V1+Y)/Y = 2n implies Vo+Vi+Y =
(SoNVy) @ (S1NVy) @Y and the DHO D; in V; + Y splits over Y. Also as Ey
acts regularly on D;, we see that Ey induces a translation group on this DHO.
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By [5, Theorem 3.2] (here we need n > 4) and (b) of Remark 3.1 there exist
homomorphisms 7 : So N Vy — Ey and g : Sy N Vo — Hom(S; NV3,Y), such
that the restriction of the element 7. € Ey to V1 +Y = (§1 NV;) @Y has with
respect to this decomposition, the form

(* )

and with respect to the decomposition U = (v) & (SoNVo) @ (S1NV1) @Y (note
that Fy acts regularly on Sy — (SoNVy) = v+ (SoNVy)) we get the description

1 e
B 1
Te = 1 Ble)
1

By symmetry there are homomorphisms 7' : S;NV; — Ej,and 8/ : S1NV; —
Hom(So NV, Y), such that a typical element T]/c € FEj is represented in the form

1 f
/ 1 p'(f)
1
1

Since 7. and 7; commute, we get f3(e) = ef'(f),i.e. 8’ = 3°. The identification
So N Vp =~ 51 NVy ~ Fy shows that S is the extension of Dy.

Let (SoNVy) @ W, W C Y, be the ambient space of . Then the ambient
space of 5°is (S1NV;)@®W. Thus (v)® (SoNVy) ® (S1NV1) & W is the ambient
space of S. The last assertion follows too.

(b) APN cASE. We choose the notation so that 0 € To. In particular
Vo = (To). Since Vo + V4 +Y is a proper subspace of U, then (using the
definition of the ambient space), there is av € S — (Vo + V5 +Y). This forces
v € T; and T; lies in the flat v + Vi, respectively v + 71 C Vi. As Ej fixes Ty
pointwise, we have By = Eg and T; = {v7 | 7 € Ep}.

Define R; by V;4+Y = R;®Y. Suppose 1 # 7 € Ey such that y = vr4v € Y.
Let 1 # 7' € Eg, 7" # 7 and set u = v+v7’. Then vrr’ = v’ +y7’ =v+u+y.
This implies v + v7 + v7’ + v77’ = 0, which is in conflict with the four-sum-
condition. We conclude that

2"={v+vr|TE€E} ={v+t+Y |te T}

Since 7o = {07 | & € E1}, we have To = {¢, | o € E1}, where @ = 0 + ¢,.
Suppose 1 # o € E1, such that ¢, € Y. Pick ¢’ € E1, 0/ # 1,0. Then

Coor = 000 = Co0' + Cor = Co + Cor.
But then 0 = 0+ ¢, + ¢, + €0, contradicting the four-sum-condition. Again

" ={cy|o€ErY = |{t+Y |teT}
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Write w € V) as w = Ty + Y, Tw € Ro, Yy € Y and define fy : Ry — Y by
fo(x) = ye,,, where ¢, € Ty is the unique element with z., = . Then Ty is the
graph of fy. The four-sum-condition shows that fy is an APN function. More-
over E; is a translation group on 7y, i.e. fy is quadratic and E; is elementary
abelian by Remark 3.1 (b) and [5, Theorem 3.5].

Similarly, write w € V} as w = zy, + Y, where z,, € Ry and y,, € Y. Define
fi: R =Y by fi(2) = ye,,, where v+ ¢, is the unique element in 77, such that
Ze,, = %. Then 714w is the graph of f; and f; is APN by the four-sum-condition.
Define ¢ : Ey — AGL(V1) by

wd(T) = wr + vT + 0.

Then
wo(T)p(T") = wrt’ +orT’ + ot o’ + v = we(rT'),

i.e. ¢ is a homomorphism, and is, in fact, a monomorphism as the vr 4 v’s are
pairwise different. Moreover ¢(Ep) induces a translation group on the graph
of fi. Thus f; is quadratic too and Ej is elementary abelian. Identifying R;
with F} we observe that S is the graph of the extension of fy and fi. The last
assertion of (b) follows from Theorem 2.5. O

Remark 3.3. With respect to extension groups there is a significant difference
between the DHO case and the APN case. For DHOs the notion of a weak
extension group and the notion of an extension group coincide, which is not
true in the APN case. If an extension F' = FYy, 7, is quadratic however, then
by Theorem 4.4 both functions fy and f; are ambient in F§ @Y, i.e. F is fully
ambient and therefore N is an extension group (and thus by Theorem 3.6 every
weak extension group is an extension group).

Lemma 3.4. Weak extension groups of a DHO or an APN function are self-
centralizing in the automorphism group.

Proof. We assume the notation of the definition of an extension group. Pick
0 € Cauys)(IN) (DHO), respectively & € Caug(s)(IN) (APN). Then this element
leaves both E-orbits (DHO), respectively both E-orbits (APN), {75, 71} as a
set invariant. Clearly, this element does not interchange both sets. We can now
adjust o (DHO) or & (APN) by some element in £ (DHO), respectively in £
(APN), such that this element has fixed points in 7y and 7;. Now E (DHO),
respectively E/ (APN), acts on the set of fixed points of o, respectively 7, in 7.
We deduce that o, respectively @, fixes 7 pointwise. We conclude that o = 1
(as T is ambient in the defining space) and the proof is complete. O

Remark 3.5. For the remainder of this section X, Y will denote F3-spaces with
dimX =nanddimY =m. Weset X =F2 X, Y =XpY,andU =XY.
We will consider simultaneously two situations:

DHO The monomorphism 8 : X — Hom(X,Y) defines a bilinear DHO Sg
ambient in X @& Y. We denote by § = Sg the extension of Sg.
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APN  fo, f1 + X — Y denote normed, quadratic APN functions ambient in
X®Y and F = Fy 5, : X = Y will be the extension of fy and f;.
Moreover § = Sg will be the graph of F.

So in both cases the group N of Section 2 is an extension group (and not
only a weak extension group). For the remainder of this section we denote
by G the automorphism group of the extension (DHO) or the linear part of the
extension (APN). The subgroups N, Ny, Ny, L, ...etc. and the symbols Sy
and &; will have the same meaning as Subsections 2.1 and 2.2 (more precisely
in the APN case we refer to the more symmetric representation of the graph
introduced after Proposition 2.6). In particular we set

Wo=00X00Y, Wi =0000XDY,
and Uy = Wy N W;. We assume in addition
n > 4.
The following characterization of the group N will be important.

Theorem 3.6. With the assumptions of Remark 3.5 the following hold: Any
weak extension group in G is conjugate to N (and is therefore an extension
group), and N is the only (and thus normal) extension group in every Sylow
2-subgroup of G that contains N.

Corollary 3.7. Let G (DHO), respectively G (APN), be transitive on S. Then
N¢(N), respectively Ng(N), is transitive too.

Proof. We only treat the DHO case; the APN case is completely similar. We
have |G : Gg| = 2""! for S € S. Let T be a Sylow 2-subgroup of G containing
N. By Sylow’s theorem we can also assume that T N Gg = Ts € Syl,(Gs).
Then T is transitive: Otherwise |T : Tg| = 2", which implies

T =|Gl2 = |G : Gsla |Gsl2 = 2" - |Ts| = 2-|T,

a contradiction (here k2 denotes here the 2-part of the number k). Since T' <
N¢g(N) by Theorem 3.6, the proof is complete. O

We prove the theorem by a series of lemmas.

Lemma 3.8. Let S C U be the extension of a DHO of rank n or the graph
of the APN function F, which is the extension of APN functions of rank n.
Assume in either case that the extension is ambient in its defining space. Let o
(DHO), respectively & (APN), be an automorphism that fizes the set {Sp,S1}.
Then one of the following hold:

(a) o, respectively @, fizes Sy and S; and

1 o012 013 owua
022 024
033 O34

044
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with 099,033 € GL(X), O44 € GL(Y), 012,013 € X, 014 € Y, and
024,034 € HOHI(X,Y).

(b) o, respectively @, interchanges Sy and 81 and

1 o012 013 ou
023 024

032 034
044

with 023,032 € GL(X), and all other o;; are as in (a).

Proof. The automorphism o (DHO) or the linear part o (APN) either fixes both
Wy and W7 or interchanges them (according as to whether or not o respectively
7 fixes or interchanges Sy or Sp). Therefore Uy is o-invariant. Decompose U =
(uo) W, W] aUy, where W, = W/ ®Up, (a =0,1), and U = (ug) ®(Wp+W1).
If o fixes Wy and W7 we get assertion (a) and the other case leads to assertion
(b). O

Lemma 3.9. The normalizer of N in G is
Ng(N)=N-L=H,

where H (DHO) respectively H (APN) is the stabilizer of the set {So,S1} in G
respectively in G.

Proof. We begin with the DHO case. As Ng(N) permutes the N-orbits we have
N-L < Ng(N) < H.

Assume now that o € H. We want to show, that o lies in N - L. Using the
action of N on § we can modify o if necessary by some element in N, such that
either o fixes Sp0 € Sp and S1,0 € S1p or that o interchanges these two spaces.

Consider the first case. By the assumption and Lemma 3.8 o fixes the
decomposition U = (Sp,0 N S1,0) & S) &S] & Uy, where Si, = (S,oNS| S €
Sa) (@ = 0,1). So, with respect to this decomposition, we may write ¢ =
diag(1, p, A, p) with pu, A € GL(X), p e GL(Y) as S; =086 X @060, 5] =
0000 X®0,and Uy =0000 08 Y. The element (b, x, be, (be+x)B(e)) € Sp.e
is mapped by o onto (b, zu, beX, (be + z)5(e)p), which must lie in Sp .. Hence
(be + z)B(e)p = (beX + zp)B(eN), which implies that (A, u, p) is an autotopism
of B,1i.e. o € L.

In the second case we see that o is represented with respect to the decom-
position U = Sy 0N S1,0 @ S; & S7 @ Uy as

1

p

This time Sp,. will be mapped onto some S; . and a similar computation as
before shows that (), i, p) is an isotopism of 3 onto 4°. Again we have o € L.
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We turn to the APN case. As in the DHO case N - L < Ng(ﬁ) < H.
Assume that @ € H. We want to show that @ normalizes N. Suppose first that
this element fixes Sy and S;. We can adjust this element by some element from
N, so that & fixes (1,0,0,0) and (0,0,0,0) too. Hence @ = o € A(F) and this
element has the shape of assertion (a) of Lemma 3.8. As o fixes (1,0,0,0) we
also have o1; = 0 for i = 2,3,4. Apply o to a typical element of Sy and we get

(Oa z, 07 fO(x))U = (07 022, 07 fo(ﬂ?)0'44 + Z‘O’24)7

022 024
044
is an autotopism of fy. Considering the other orbit, we similarly obtain that

which shows f(zo22) = fo(x)oss+x094 for all 2 € X. Hence ¢ =

¢ = ( 933 334 > is an autotopism of fi. In particular ¢ and ¢’ are linked.
44

Hence o = ®4 4 € Lo.

Assume now that & interchanges the two sets. Adjusting this element by
some element in N, we can also assume that & interchanges (1,0,0,0) and
(0,0,0,0). This implies that ¢, = (1,0,0,0) and ¢ has the shape of assertion
(b) of Lemma 3.8. Now

(071'70’ fO(I))E = (L Oa Zo23, 07 fo(l’)0'44 + LEO'24),

which implies that fi(zoa3) = fo(2)o44 + xo24. Thus ¢ = ( 723 224 ) is an
44

isotopism from fy to fi. Similarly, we obtain an isotopism ¢’ = ( 732 234 )
44
from fi to fo. This implies that & = ¥y 4 € L. O

Lemma 3.10. The following statements hold.

(a) Let T be a non-identity element in No U Ni. Then Cg(t) < NLo. In
particular N is the only group conjugate to N that contains T.

(b) NG(NZ) = NL() fO’/‘i = 07].

(¢) Let E = Ey x Eq be a weak extension group and assume that 1 # 7 €
Eo U Ey normalizes N. Then T normalizes N; and fixes S;, i =0, 1.

(d) Ca(N;) =N fori=0,1.

Proof. We work mainly in the DHO case and comment only on the APN case
when necessary.

(a) Let 1 # 7 € Ny and o € Cg(7). In this case o fixes Sg = Fixs(7) and
S1 =8 — 8. Hence 0 € Ng(N) = NL by Lemma 3.9 and thus even o € N Ly.
Assertion (a) follows by symmetry.

(b) Let o € G normalize Ny. Then o fixes o = Fixg(Np) and S =S — Sp.
Again the assertion follows by Lemma 3.9.

(c) As 7 normalizes the group N, it either fixes Sy and Sp or it interchanges
these sets. But 7 has precisely 2" fixed-points in &, which rules out the second
case. Thus 7 must normalize Ny and Nj.
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(d) By (a) we have N < Cg(7) < NLg. We first consider the DHO case.
Assume that u, = diag(1, u, A, p) € Cr,(Np) and e € X. A computation shows

1 e 1 e

0 R nB°(e) U, = Moot — % \ B°(e)p

p p

Thus A = 1 and a = diag(1, u, p) is an autotopism of 3, such that S(eu) = f(e)p
for e € X. Hence ker S(ep) = ker B(e)p = ker f(e) which implies p = 1 and
then p = 1. Therefore Cr,(Ny) =1 and (b) follows by symmetry.

Assume now the APN case and let ®4 4 € Cr,(Ny), with @4 4 as in sub-
section 2.6. The equation @y ¢nge = no,Pgy ¢ shows that e = ey, fi(e) =
fi(e)p+ed, and pBy(e) = Bi(e)p for all e € X. This shows that u = 1. We con-
clude from the equation S3i(e) = Bi(e)p, that pliy ge) = limp(e) for all e € X.
By Lemma 2.9 Y = (Imfi(e) | e € X). This implies that p = 1. Therefore
0 = 0 must hold too, i.e. ®4 4 = 1. The assertion follows by symmetry. O

Lemma 3.11. Let E = Ey x Ey be a weak extension group that normalizes N .
Then EE= N.

Proof. We treat only the DHO case, the APN case is completely similar. By
(c) of Lemma 3.10 E; fixes the orbits of N. This shows that £ and N have
the same orbits. Assume that Fixs(Ey) = Sp. Then Ey < Cg(N;) = N and
therefore £y = Ny. The assertion follows by symmetry. O

Proof. (Theorem 3.6) Let S a Sylow 2-subgroup, which contains the extension
group N and the weak extension group E.

Claim. The extension group N is normal in S.

Assume that N is not normal, i.e. Ng(N) < S. Then Ng(N) < Ng(Ng(N))
by a basic result on p-groups. Pick v € Ng(Ng(N)) — Ng(N). Then NY # N,
and N7 is normal in Ng(N)Y = Ng(N). So N and N7 normalize each other.
By Lemma 3.11 N = N7, a contradiction. The claim follows.

By Lemma 3.11 we also obtain £ = N. The proof is complete. O

4 Isomorphisms

In this section we solve the isomorphism problem for extensions of bilinear
DHOs and extensions of quadratic APN functions. We also characterize those
extensions of DHOs and APN functions that have a translation group. Finally,
we will show that the number of inequivalent extensions obtained form the
isotopes of one quadratic (Gold) APN function grows exponentially with the
dimension.

We will assume in this section that extensions are ambient in their defining
spaces.
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4.1 DHO case

Theorem 4.1. Let X and Y be finite dimensional Fa-spaces, with dim X > 4,
and let B,5" : X — Hom(X,Y) define bilinear DHOs ambient in X ® Y. The
following are equivalent:

(a) B’ is isotopic to B or B°.
(b) Sg: is isomorphic to Sg or Sge.
(c) Spr and S are isomorphic.

Proof. The implication (a)=-(b) is trivial, whereas (b)=-(a) is [5, Theorem 3.12].
The implication (a)=-(c) follows from Proposition 2.3. We have to show the
implication (c)=(b).

We index objects associated with S by a subscript 8 and objects associated
with 8’ by an index 3. Set Gg = Aut(S) and Gz = Aut(S’). Let ¢ € GL(U),
where U = X @Y, be an isomorphism from S onto S . Then Gp = ¢~ 1Gpo.
Using Theorem 3.6 ¢ can be chosen in such a way that Ng = ¢~ ! Ng¢.

So ¢ fixes or interchanges the two subspaces Wy and W; from Lemma 3.8.
Thus ¢ has a shape as described in that lemma. In fact, as 3[5 and gﬁo are
isomorphic, we may assume that ¢ fixes the two spaces and we can represent
¢ in form (a) of that lemma (replace a symbol o;; by ¢;;). We can now argue
exactly as in the proof of Lemma 3.9 and obtain the equation

b33 B(e)pas = B (epaz)

for all e € X. Hence 8 and 8’ are isotopic and therefore the implication (c)=(b)
follows. O

Theorem 4.2. Let X and Y be finite dimensional Fo-spaces, with dim X > 4,
and let B : X — Hom(X,Y) define a bilinear DHO ambient in X @Y. The
following are equivalent:

(a) There exists some v € GL(X), such that B : X — Hom(X,Y) defined by
zB(e) = zyB(e) defines a symmetric DHO.

(b) There exists some v € GL(X) such that (y~1,v,1) is an isotopism from
B to °.

(c) Sg is isomorphic to a bilinear DHO.

Proof. (a) & (b) Assume (b), i.e. that (y~1,7,1) is an isotopism from 3 to 3°,
ie. z6(e) = zy~1B°(ey) for all z,e € X. Hence

zyB(e) = ef’(xy) = eyy™ ' B%(ay) = eyB(x),

i.e. [ is symmetric and assertion (a) holds. Clearly, the argument can be
reversed.
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(a)=(c) By assumption ¢ = (v,1,1) is an isotopism which maps 8 onto B
and 35 is bilinear by [5]. The assertion follows from Proposition 2.3.

(c)=(b) By assumption Aut(S), where S = Sg, contains a translation group
T and since all translation groups are conjugate (use [5, Thm. 3.11]), we may
assume that N and T lie in a common Sylow 2-subgroup of the automorphism
group. Again by [5, Thm. 3.11] T is normalized by N and as both groups are
self-centralizing (Lemma 3.4), we have

[N, T] = NNT = Cn(T) = Cr(N).

Since T acts regularly on S, we have |T| = 2" and TN N, = 1, a = 0, 1.
Thus [N NT| < 2™. Hence N is a proper subgroup of NT. By a basic result
on p-groups there exists 7 € Nyp(N) —T. We may adjust 7 by an element in
N, i.e. we may assume 7 € T — (N NT). Clearly, 7 leaves the set {Sp,S1} of
N-orbits invariant.

Assume that 7 fixes the sets Sy and S; and therefore normalizes N,, a =
0,1. This implies that [7,N,] < N, NT = 1 and thus 7 € Cg(N) = N, a
contradiction. Therefore 7 interchanges both orbits, i.e. Sp o7 = Si,e. Now ng ¢
moves 51,0 onto S1.. So, replacing 7 by ng.7no if necessary, we may even
assume So o7 = S1,0. Use Lemma 3.8 to see that 7 has, with respect to the
decomposition (SN S1,0) ® SHH ST @ Uy (here Sq0 = (So,0NS10) B S,), the
shape

p

and, as tk (1 4+ 7) = n (see [5, Thm. 3.2]), we also see that p = 1. The
the typical element (b, be, be + z, (be + z)5(e)) of Sy is mapped under 7 onto
(b, (be +x)y~ 1, be, (be +x)B(€)), which must lie in Si .. So there exists y € X
with (be + x)y~! = bey + y. Hence (be + x)B(e) = (be + )y~ 1B°(ey) and
assertion (b) follows. O

4.2 APN case

Theorem 4.3. Let f; : X — Y be quadratic APN functions for i = 0,...,3
with dim X > 4. Set F = Fy, ¢, and F' = Fy, r,. Assume moreover that F' and
F' are fully ambient. The following are equivalent:

(a) F and F' are equivalent.
(b) (fo, f1) is isotopically linked to (f2, f3) or (fs, f2).

Proof. (a)=(b) We index objects associated with I by a subscript F" and objects
associated with F’ by an index F'. Let ® € AGL(U), where U = X © Y, map
Sr onto Sgr. Then Gpr = Aut(F') = & Aut(F)® = @7 'Gp®. According to
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Theorem 3.6 we can adjust ® by some element in G such that Ng» = @~ ! Np®.
Considering the orbits, we see that

{SO,Fa SI,F}CI> = {SO.,FUSLF’}«

Assume first that So p® = Sp.rr and S; p® = &1 7. We can further adjust @
with some element from Nz, such that ® fixes (0,0,0,0) and (1,0,0,0). Then
® € GL(U) and we can argue as in the proof of Lemma 3.8 to see that this
operator has the shape

1 @5 P13 Py

Do Doy
(b =
P33 D3y
Dyy
The same computation as in the proof of Lemma 3.9 shows, that ¢ = ( 22 $24
44

is an isotopism from fy to fo and ¢’ = < 33 gii
to f3.

The case where Sp p® = S1 pv and S1,p® = Sp,r leads similarly to linked
iosotopisms ¢ : fo — f3 and ¢’ : f1 — fo.

The implication (b)=-(a) follows by the obvious construction of an equiva-
lence operator ® with the help of linked isotopisms ¢ and ¢’. O

> is an isotopism from f;

Assertion (c) of Proposition 2.6 can be generalized to:

Theorem 4.4. Let X and Y be finite dimensional Fo-spaces and let fo, f1 :
X — Y be quadratic APN functions, with dim X > 4. Set F' = Fy, ;, and
assume that F is ambient in its defining space. The following are equivalent:

(a) fo and f1 are ambient in X @Y (i.e. F is fully ambient) and there exist
v € GL(X) and ¢ € Hom(X,Y') such that fi(z) = fo(zy) +ze forz € X.

(b) fo and fi are isotopic and every isotopism from fo to fi1 is linked to an
an autotopism of fy.

(¢) Fy,. 5, is equivalent to the quadratic APN function Fy, ,.

(d) Fyy ¢, is equivalent to a quadratic APN function.

Proof. The implication (c¢)=(d) is trivial.

v

(a)=(b) By assumption ¢ = is an isotopism from fy to fi. Let

€

1
1) . . . .

¢ = H p be an arbitrary isotopism from fy to fi. Then the autotopism

po~t of fyis linked to ¢.
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(b)=(c) Suppose ¢ = ( poo ) : fo — f1 is an isotopism. Then ¢ is linked

p
with an autotopism of fy of the form < T ([J; ) . Define

1
o
[T
P
A computation shows that Spo = Sy and

S0 ={(1,0,zpu, fozp)) |z € X}.

Hence o is an equivalence map from FYy, r, onto Fy, ¢, .

(d)=(a) Suppose now that F' is quadratic and ambient. By Lemma 2.9
there exist subspaces Yy, Y7 of Y, such that Y =Yy +Y; and (S5,) = X @Y,
i =0,1. By [5] Aut(F) possesses a translation group T and by [5, Thm. 3.11]
all translation groups are conjugate, self-centralizing, and normal in any Sylow
2-subgroup that contains the translation group. We may therefore choose T,
such that T and N lie in a common Sylow 2-subgroup of the automorphism
group. In particular N normalizes T, NT is a 2-group, and Cr(N) =T NN
(as T is self-centralizing). As T has a regular action on S, we have TN N; = 1,
i =0,1. Thus [TNN| < 2" ie. TNN is a proper subgroup of T and N < NT.
By a basic result on p-groups there exists 7 € Ny (V) — N. We may adjust 7
with an element in N, i.e. we may assume 7 € T—(NNT). Then §;7 € {So, S1},
i=0,1.

Assume, §;7 = S;, ¢ = 0,1. Then 7 normalizes N; and hence [N;, 7] <
N;NT =1,ie, 7€ Cap)(N)=NorteTnNN, a contradiction.

Hence So7 = Sy, i.e.

(0307070)?: (laoaeafl(e))a e€ X.
As (1,0,0,0)n0, = (1,0,€, fi(e)), we see (0,0,0,0)n97ng. = (1,0,0,0), or if
we replace T by ng Tng e, we may assume that (0,0,0,0)7 = (1,0,0,0), i.e. ¢, =

(1,0,0,0). With respect to the decomposition U = ((1,0,0,0)) & W, e W{ & Uy
(with W{, W] as in the proof of Lemma 3.8) 7 has the shape

1

But, arguing as in the proof of Theorem 4.2, we see that p = 1. Thus Sy7 =
{(1,0, 27, fo(x) + 2¢) | € X} and S;7 = {(0,2771,0, f1(x) + 26) | € X}.
Therefore for all x € X

fi(zy) = folz) +ze,  folzy™") = fa(z) + 6.

This implies 231 (ey) = xfo(e) with 8; = Bf,. By Lemma 2.9Yy = > .y Im By(e) =
Y ecx Im fi(e) = Y1. We conclude that Y = Yy = V7. Assertion (a) follows. [
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4.3 Counting APN functions

Definition. (a) Let G be a finite group with subgroups H, K. Define [H : G :
K] to be the number of double cosets of the form HxK, x € G. Furthermore,
we write [H : G : K]o for the number of sets of the form HxK U Hxz 'K (so
that, in the case H = K, these are the equivalence classes of the relation that is

obtained by the natural action of the inversion map on the set of double cosets).
(b) Let f : X — Y be a quadratic APN function. We denote by Ay the

restriction of Autop(f) to Y. So if < A Z ) € Autop(f), then p € Ay.

Remark 4.5. A lower bound for [H : G : K] is L\Hlﬁ‘mj and |-2|I‘{C|¥||K|J is a lower
bound of [H : G : K]o.

Theorem 4.6. Let f,g: X — Y be quadratic APN functions, f o g.

(a) There exist precisely [Ag : GL(Y') : Ay] pairwise inequivalent APN func-
tions of the form Ff g, o € GL(Y').

(b) There exist precisely [Ay : GL(Y') : Aflo pairwise inequivalent APN func-
tions of the form Fy jo, o € GL(Y).

Proof. (a) Suppose Ff 4o ~ Fy 48, where o, 5 € GL(Y). By Theorem 4.3 there
exist p € GL(Y), A, p € GL(X), and 7,9 € Hom(X,Y) with

f@X) = fla)p+ay, glzp)a=g(x)Bp+ x4,

for x € X. This implies

-1
( A z ) € Autop(f), ( # ﬁ(spaa’l ) € Autop(g).

Thus p € Ay N B71A « or equivalently AjaAr = AyBAs. So Frga ~ Frgp
implies that AjaAy = A;8A . Since the arguments can be read backwards we
get assertion (a).

(b) Suppose Fy ro ~ Fy g, where a,8 € GL(Y). By Theorem 4.3 there
exist p € GL(Y), A, u € GL(X), and v, € Hom(X,Y) with

(1) f@A) =f@p+zy, flap)a= f(z)Bp+ xd,

or
(2) flzX) =f(@)Bp+ay, flazp)a=f(z)p+ xd.
Case (1) leads as in (a) to AfaAy = AyBAy. In case (2) we see that

A Sa~!
< gp )a ( K pOé_l > € Autop(f),
which implies that AfaA; = A¢371A;. Again all arguments can be reversed.
O
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Remark 4.7. For a,3 € GL(Y') one observes that F, g5 ~ Ffg3,-1. Hence
Theorem 4.6 counts all APN functions of type Fo g5 and Ffq,rg.

Proposition 4.8. LetdimX =n>T7 and let f: X - Y = X be a Gold APN
function (i.e. f(x)= 22"+ (n,k) =1). Then there exist at least

n—2

23+(";5) H(2z o 1)

i=2
inequivalent APN functions of the form Fy o, oo € GL(X).

Proof. From [2] we deduce that Ay is a subgroup of Con_; - C,,. So

[A: GL(Y) : Ag)o > 20) ﬁ(zi —1)/(2" - 1)2 -n2-2,

=2
which leads, together with Theorem 4.6, to the assertion. O

Example 4.9. A recent study [11] shows that there are more than 470 quadratic
APN functions f : F5 — F7 such that |Ay| = 1. Hence there are more than

471 471
(2 + ( 5 )) |GL(7,2)| = 18,097,231, 719,038,976, 000

inequivalent APN functions f : F§ — Fi* one of degree 2 and the others of
degree 3.

5 Groups generated by extension groups

In this section the symbol S denotes the extension of a bilinear DHO Sg in
the DHO case, while in the APN case this symbol denotes the graph of the
extension F' = Fy, r, of quadratic APN functions fy and fi. We shall assume in
both cases that S is ambient in the defining space, and in the APN case we also
assume that F' is fully ambient. In particular, by Theorem 3.6, weak extension
groups are actually extension groups. Also set G = Aut(S) in the DHO case,
while in the APN case we have G = Aut(F) and G = A(F)) is the linear part of
G. Denote by C the conjugacy class of extension groups in G (see Theorem 3.6,
ie.
C={N"|~veG}

We assume that & admits more than one extension group and collect results

about groups that are generated by more than one extension group. Our main
purpose is to show:

Theorem 5.1. Let S be an (n + 1)-dimensional DHO or the graph of an APN
function of rank n+ 1, n > 4. Then any two extension groups M, N are con-
jugate in (M, N) and their intersection has size |M N N| = 2""1. In particular
C is a conjugacy class in {C).
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For our proofs Timmesfeld’s result on weakly closed TI subgroups [8] will
be instrumental. A first application of this theorem leads to the structure of
(N,N7), NY € C—{N}, if  INNN"| is maximal (Lemma 5.4). In a second appli-
cation we determine the the structure of the group generated by the conjugates
of Ny in the stabilizer of a point of S (Lemma 5.9). As a consequence we will
see that [N N N7| has the same size for all N7 € C — {N} (Lemma 5.10). Then,
by a somewhat tedious induction, we will obtain in Section 7 the structure of
(C) (Theorem 7.11).

Lemma 5.2. Let Q < N be a subgroup with QN Ny = QNN; =1 and |Q| < 2™.
Then Crryq(N/Q) = N/Q, where M is the common normalizer of Q and N in
G.

Proof. Let 4Q lie in Cg/q(N/Q). Hence [N,v]| < @, in particular v € Ng(N).
We can adjust 7 by some element in IV, such that v € L.

DHO cAsSeE. We first consider the DHO case.
CASE 1. v € Lg. Hence

1
Y= K A
p
Pick v € N, i.e.
1 e e *
L 1 B°(e1)
1 Ble)
1
Then
1 eu e *
1, 1 ptBoer)p
Y oVY= 1 /\_16(6) )
1
so that
1 e(w+1) es(A+1) =
1 *
[y vl = 1 .
1

Choose v with e; = 0. Then [y,7] € NgNQ = 1. As we can choose e arbitrarily
we get 4 = 1. Similarly A = 1. But then we also have p =1 and v = 1.
CASE 2. v € L — Ly. Hence
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Now we have

1 etdA eu ) *
_ 1 A7 B(e
Y= 1 u‘lﬁégezf))p ’
1
so that
1 e+e A er+eu *

['7, l/] _ 1 Bo(el) +7)‘1_10ﬁ(6)p
1 Ble) +n="B°(er)p

1
Choose, for an arbitrary e € X, the element e; = eu. Then
[V, V] € NoNn@Q = 1.

This implies that e + e;A =0 or A = p~ L.
Next take arbitrary e and e; = 0. Then

1 e e *
—1
=1, A ) g
1

and |@Q| > 2™, which is excluded.

APN cASE. We now assume the APN case and distinguish again the cases
v € Lgand v € L — Lg.

In the first case we have (for the linear part)

1
_ I g
7= A w
p
and the linear part v of a typical element 7 € N is represented as

1 e e *

L 1 Bo(er)

1 ,61 (6)
1

A quick computation shows that

1 e(u+1) e(A+1)
1
[y.v] = 1

S

1

(as in the DHO case). The same argument as in the DHO case leads to v = 1.
In a similar way CASE 2 can be adapted to the APN situation, leading to the
contradiction |@Q| > 2.

O
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5.1 Groups generated by two extension groups

Lemma 5.3. Let N7 be in C — { N}. Set Q = NN N".
(a) QN N; =1 fori=0,1.

(b) Assume that Q has mazimal order. Then |Q| < 2™ and N/Q is a self-
centralizing TI subgroup in H/Q, H = (N, N7).

Proof. We start with the DHO case.

(a) As N7 £ Ng(N) (see Theorem 3.6) we have by Lemma 3.9, that the
N-orbits {Sp, S1} are different from the N7-orbits {Sp7y,S1v}. Assume that o,
with 1 # o, is in (Ng U N1) N Q. Then N7 leaves invariant the set of fixed
points of o that are Sg or S;. But then NV and N7 would have the same orbits,
a contradiction. Thus Q N N; =1 for i = 0,1 and |Q] < 2™.

(b) By (a) Q acts fixed point freely on S and |@Q| < 2". Assume |Q] =
2™, Then @ would have the orbits {Sp,S1}. But as @ < N7 we conclude
by symmetry that {Spvy,S17} = {So,S1}, a contradiction. This implies that
|Q] < 2". By Lemma 5.2 N/Q is self-centralizing in H/Q.

Finally, Q < Z(H), i.e. H < Ng(Q). By the choice of N7, the group N/Q
has the TI property in H/Q.

In the APN case we argue with N and N instead of N and N7. Then all
the arguments from the DHO case can be repeated. O

Lemma 5.4. Assume N7 € C — {N}, such that [N N N7| is mazimal, and set
H = (N,N"), Q= NAN", R= Ny(N?), R, = Nx+(N), and P = Oy(H).
The following hold:

(a) P = RRy, Q= RN Ry has order 2"~! and |P| = 23"~1. The group P is
transitive on S.

(b) H/P ~ SL(2,2)) ~ Sym(3).
(c) IN;AP|=|N/NP|=2""1i=0,1. The group Py = (NoNP)(NyNP)Q

is elementary abelian of order 2373, This group is characteristic in P.

(d) The set of orbits of the group Py is {S; NS;v | 4,5 = 0,1} and each orbit
has length 2771,

(e) The group H/P acts faithfully on P/P,.

Proof. By Lemmas 5.2 and 5.3 N/Q is a self-centralizing TI subgroup in H/Q.
By [8, p. 243], we have that N/Q is weakly closed in Cgq(7Q) for 7€ N —Q
(ie. N7/Q < Cyq(1Q), 0 € H implies N = N7). Clearly, as @ < RN Ry we
have @ = RN Ry. Also H = (N° | o € H) (see [8, (2.5), (2.14)] and [5, Lemma
4.3]).

DHO casE. Since {Spo,S10} # {So,S1} for 0 € H with N # N¢, the
group H is transitive on S.
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Assume first that Ny(N?) = @ for all elements o € H with N7 # N. Then
N/Q is strongly closed in Cp/q(7Q) for every element 7 € N — @ (see [8, Proof
of (2.14)] or [5, Lemma 4.3]). By [8, (2.5)] we get that H/Q ~ La(q), Sz(q) or
(H/Q)/Z(H/Q) ~ Us(q), ¢ > 2"*1. But as Q acts fixed point freely and since
|H : Hg| = 2"*!, we see that H/Q has a proper subgroup of 2-power index,
which is impossible (see the proof of [5, Lemma 4.4]). In particular @ > 1 holds.

So we may assume that R > Q. We apply [8, (2.14)] to H/Q and obtain
that H/Os(H) ~ Doy, k odd, La(q), or Sz(q), g a 2-power. Moreover, we have
O2(H) =P = RR". As we have seen, H is transitive on . We distinguish the
cases HsP < H and H = HgP, S € S.

CASE HgP < H. As we have noticed, La(¢) and Sz(q) do not have proper
subgroups of 2-power index, i.e. H/O9(H) =~ Dgj, k odd. Since the dihedral
group Dy, contains for every divisor ko of k a subgroup Dyg,, we may assume
that we have chosen « in such a way that k is a nontrivial prime. Then a cyclic
subgroup of H of order k has a fixed point on S, i.e. k divides the order of Hg P.
Hence |H : HgP| = 2. Then P is not transitive: Otherwise 2"*! = |HgP :
(Hsp)s‘ = |H3P : H5| and 2n+1 = ‘H : H5'| = |H : H5P|-|H5P : Hs‘ = 2"+2,
a contradiction.

As [PN N| = 2?71 Ny and N; cannot not both be contained in P N N.
Assume Ny & PN N and pick S € Sp. Then [NNP: (NNP)g|=|NNP:
NoN P| > 227=1/2n=1 = 27 This implies that Sy lies in one of the P-orbits.
As H is transitive all P-orbits have the same length, i.e. {Sp,S1} is the set of
P-orbits. By symmetry, we have {Spv,S17} = {So, S1}, a contradiction.

CASE HgP = H. Let p be in H such that N” # N. Note that the elements
of (No NP, N§ N P) fix all elements in SoNSpp # 0. Thus [NoNP,N§ NP} <Q
fix these elements too, i.e. [NoN P,NJ/ N P] =1. By Lemma 5.3, (No N P) N
(NfNP)=1,and as NoQ/QNNIQ/Q =1, we get (NgNP)(NfNP)NQ =1,
and we see that (Nog N P)(NJ N P)Q = (No N P) x (N§ N P) x Q elementary
abelian. Hence, Py = (Q, N/ NP | p € H) is a normal, elementary abelian group
of H.

The group P is transitive, as

2"t = |H : Hg| = |HsP : Hg| = |P: (HsN P)| =|P: Ps|.

Consider the 2-group T'= PN = NRP. Then N is normal in T', i.e. T stabilizes
the set {Sp,S1}. The transitivity of T' shows that there exists a v/ € R such
that 85, = §; and 81”, =8y. Write v/ = ov witho € L —Lgand v € N. In
particular

>
=
- %X % %

p

As (v')? = 1, we deduce that A = p~! and p? = 1. Moreover, [Ng,V'] < R < P
and |[No, v']| = |No|, NoN[No,v'] =1 by Lemma 5.3. Thus N = [Ny, V'] x Ny =
[No,l//] X Nl and NP = N()P
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Assume that |[NP/P| = 2*. Then, a = 1 if H/P ~ Dy, and if 2% = ¢, if
H/P ~ SL(2,q) or H/P ~ Sz(q) (note that we have NP/P = Q(T/P) for
N <T € Syly(H)). If H/P ~ SL(2,q) or H/P ~ Sz(q), then by [8, (3.2)] P/Q
is the direct sum of natural H/P-modules, i.e. |P/Q| > 22¢ in the first case and
|P/Q| > 2% in the second case.

We claim a < n. Otherwise, No N P = 1: Let T be a Sylow 2-subgroup
of H that contains N. Then Ng(T) = TC, with a cyclic group C of order
2% — 1 (as H/P is isomorphic to SL(2,2%) or Sz(2%)), which acts regularly by
conjugation on Qq(T/P) — 1. We know, that Ny £ P and Ny is normalized
by C as Ng(T) < Ng(N). This implies 1(T/P) = [Ny, C]P/P and hence
[[No,C|P/P| = 2% > 2" ie. NgN P = 1. So we have [N? N P| < 2" for all
p € Hand H/P ~ SL(2,q) or H/P ~ Sz(q), ¢ = 2". Since, P/Q = R/QxR"/Q
we have 22" < |P/Q| < |[N/Q|? = %, which forces |Q| = 1, a contradiction.

Hence [NgN P| = 2" > 1 and as [Ny N P,v'] < @, we have |Q] > 2" .
Also P is non-abelian, since [(No N P),v'] # 1. By the modular law R =
PN N = [Ny, V'] x (NgN P). Since P/Q = (R/Q)(R"/Q), we get |P/Q| =
IR/Q| - |RY/Q| < Z5™ - 2" < 927 Clearly, [No,»| N Py and No N P are
contained in Py, so that |Py/Q| > [(No N P)/Q| - |[(Ng N P)/Q| > 22"~2% and
finally

1 <|P/Py| <22

holds (P/Py # 1, as P is non-abelian).

As P/P, contains a natural H/P-module, this immediately rules out the
possibility that H/P ~ Sz(2%). Assume next that H/P ~ SL(2,2%). Then
P/P, is the natural SL(2,2%)-module and NYP/P is a Sylow 2-subgroup of
H/P. As before there exists a cyclic group C of order 2* — 1, such that CP/P
normalizes N7 P/P and which acts regularly on NYP/P —1 and on RYPy /Py —
1=A{()Py/Py | k € C}. Since the elements in Py < Ny (Np) leave the sets
Sp and & fixed, and as R"Py/Py — 1 = {(v/)*Py/Py | k € C}, all elements in
RY — Py interchange the two sets, forcing |RYPy/Py| = 2, a contradiction. So
we have a = 1, |Q| = |[No N P,v']| = 2"~ !, (Lemma 5.3) and |P/Py| = 4.

We finally claim that k = 3, i.e. H/P ~ SL(2,2) ~ Sym(3). Let C < H be
a cyclic group of order k, such that CP/P is the unique subgroup of index 2 in
H/P. The group C acts on the four group P/Py. Hence there exists a subgroup
Cy of C, with |C : Cy| < 3, which acts trivially on P/Py. By [8, (3.1)] we know
Cpio(o) = RPQ/Q for 0 € NP — P. For 1 # p € Cy we have N # N* and

NP/P = (NP/P)’ = N°P/P # NP/P,

a contradiction.

Assertions (a), (b) and the first two statements of (c) are now clear. If
o € P— Py, then |Cp,(0)| < 2272, which shows that Py is the only elementary
subgroup of P of maximal order. So (c¢) holds. Clearly, Py fixes every set
Si,Siv, 1 = 0,1 and @ acts regularly on each intersection S; NS, ¢,7 = 0, 1.
This implies (d). We have already seen that C' ~ Cj acts faithfully on P/P,.
This shows (e).
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APN cAsE. We now argue with the group H and its action on S. Now all
arguments of the DHO case can be repeated, only that in CASE HgP = H the
linear part of the element @ now has the shape

1
B

A 0

p

However this slight difference is irrelevant. The arguments of the DHO case
show again that = A~! and p? = 1. O

5.2 More properties of Ny and NV,

For the remainder of this section we only work in the DHO case: all
arguments can be carried over directly to the APN case. We can do so,
as we do not need the linear representation of the automorphism group on the
vector space U any more (we just use the permutation representation on the set

S).

Lemma 5.5. Let 7 be an involution in NL — N that is conjugate to an element
in No U Ny. Set To = Fixs(7) and T1 = S — To. Then the following hold:

(a) 7€ NLy— N.
(b) Let v € N1. Then one of the following holds:

(1) v e Cn, (1) and v fizes SoNTy and So N Ty.
(2) v & Cn, (7) and v interchanges So N Ty and So N Ty.

The analogous statement holds for v € Ny.
(c) |Cn,(7)| = |Fixs, (7)| = 2"~ fori=0,1.
(d) Let v; € N; — CNi(T); 1=0,1. Then:

(1) vovy interchanges Ty with Ty.

(2) vov1 € Nn(M), where M is the unique conjugate of N that contains
T.

(3) 1# [r,vor1] € M NN.

Proof. Part (a) follows from assertion (c) of Lemma 3.10.

To (b) and (c): By assumption we have NJ = N;, i = 0,1 and [r, N;] # 1
by Lemma 3.10.

(1) Let v € Ny with (7o NSp) N (To N So)v # 0. Then v € Cy;, (7).

Let S € (ToNSo) N (To NSp)v, then S is fixed by (v7)2. But (v7)? lies in
Np and fixes S € Sy, which forces (v7)% = 1, i.e. v € Cp, (7).

(2) We have |To N So| = [To NSy | =271
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Assume for instance | 7o N Sp| > 2”1, Choose an element v € N1 — Cy; (7).
Then (7o NSo) N (To N Sp)v # ® and (1) implies v € Cy, (1), a contradiction.
The assertion follows by symmetry.

(3) Let v € Ny — Cp, (7). Then (To NSo)v = T1 N So.

By (1) (TonSo) N (To NSp)v =0, and (To NSp)v C Sy, as 7 normalizes Nj.
With (2) this implies the assertion.

(4) We have |Cy;, (7)] = 2"~ for i = 0, 1.

By (3) we have that the group N; induces a permutation representation on
{To NSy, T1 NSy} and Cy, (7) is the kernel of this permutation representation.
This implies [Ny : Cy, (7)| = 2.

By (1) - (4) the assertions (b) and (c) follow.

To (d): By the choice of the elements v; we have 1 # [r, ;] € N;, in particular
1 # [r,vor1] € N. By (a.2) we have (SoN7To)vov1 = SoNT1 and (SN To)vovy =
S1 N Ty, i.e. vy interchanges 7o and T;. Then vov; € Ng(M) by Lemma 3.9
and thus [1,vp11] € M, so (d) holds. O

Lemma 5.6. Let 7 =77 € NL — N be an involution where 79 € Ny U Ny. Set
M = N7 and M; = N, i =0,1. Then:

(a) M N N|=2""1 In particular the assertions of Lemma 5.4 hold for the
group H = (M, N).

(b) Set To = Soy, Th =S1y and D ={S5;N7T; | 0<4i,5 <1}. Then D is the
set of (M N N)-orbits on S.

(d) The group H acts on D and Py is the kernel of this action. P/Py induces
a Klein four group on D and H/Py ~ Sym(D) ~ Sym(4) (here P and P,
have the meaning of Lemma 5.4).

(e) We have Py = (N, (N) X Nag, (N))(Nn, (M) x Ny, (M)) and Py = (M N
N) X Nppy(N) X Nyoy(M) = (MNN) x Ny, (N) x Ny, (M)

Proof. By Lemma 5.5 |Cy,(7)| = 2"~ ! for i = 0,1. Thus Cn,(7) x Cn, (1) <
Ca(r) < Ng(M) by Lemma 3.10 (a). As Cn,(7) fixes S;, i = 0,1, as well
as Fixs(7) this group fixes every set in D. For v; € N; — Cn,(7) the element
v = v1vy interchanges 7o with 77 (assertion (d.1) of Lemma 5.5), i.e. (Cn,(7) X
Cn, (7)){v) < Ny(M). Then Theorem 3.6 implies Ny (M) = (Cn, (1) xCn, (7)) (V).
Also by symmetry we have Ny (N) = (Car,(0) x Car, (0))(w) for any element
1 # 0 € Ny,(M)U Ny, (M) and an w in N, which interchanges Sy with
Si. In particular |Cyy, (o) = 277! and Cpy,(0)” < M;. Thus we have that
[[Cas, (o), V]| = 277 [Cagy(0),v] < M NN, and M NN = [Cp(0),v] by
Lemma 5.4. This implies (a) and (b).

By Theorem 3.6, Lemma 3.10 and Lemma 5.5 Ny, (M) = Cy,(7'), i = 0,1,
for all 1 # 7' € N, (N) U Ny, (N). Hence we have Ny, (M) = Cn, (N, (V)
for 0 <4,j <1 and by symmetry we obtain assertion (c).
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In particular P = (Nyy, (N) X Npg, (N)) (N, (M) x N, (M)) is elementary
abelian and this group acts trivially on D. From Lemma 5.4 we conclude P= Py
as Py is the only elementary abelian subgroup of P of index 4. Assertions (d)
and (e) now follow from Lemma 5.4. U

Remark 5.7. (a) With the notation as in the Lemma, one has
NMO(N) =MyNNLy.

(b) Again set H = (M, N) as in Lemmas 5.4 and 5.6. For later purposes we
record that, with the notation as in these lemmas:

(1) Every H-composition factor in the group P/Q is the natural H/P-module
(i.e. as P/N ~ SL(2,2) this composition factor has order 4).

(2) Z(H)=MnNN.

Because of Lemma 5.6 (d) for assertion (1) it suffices to consider a composition
factor W in Py/Q. As P is a 2-group, we have 1 < Cw (P) (see [1, (5.5)]), i.e.
W = Cw(P) (as Cw(P) is H-invariant). So W is an H/P-module and hence
either trivial or W is the natural SL(2,2)-module. Let C = (J) be cyclic of
order three. By Lemma 5.6 (d) we may assume that Sy NSy is invariant under
d, and that § permutes the sets So N S17y, S1 N Spy, and S; N Sy cyclically.
Then Sp N Sy C Fixs, N # So. This shows that Ny, (N7) N Ny, (N?)? = 1
and Q N Ny, (NY)Ny, (N7)? = 1. We conclude that § acts fixed-point-freely on
Py/Q, i.e. W is not the trivial SL(2,2)-module.

Clearly, Q =M NN < Z(H) as H= (M,N) and Z(H) < P. Assertion (2)
follows from (1).

5.3 Ny as a TI group

The goal of this subsection is the proof of Proposition 5.10. For this purpose we
consider the group generated by conjugates of Ny in the stabilizer of a point.
Let Sp € S be fixed by No. Let F be the set of NJ, v € G, such that N
fixes Sp and set
F=(F).

Lemma 5.8. The following statements hold.
(a) F is a normal subgroup of the stabilizer of Sy in G.
(b) F is a conjugacy class of self-centralizing TI subgroups of F.
(c) O(F)=1.

Proof. Part (a) is clear by the definition of F'.
(b) By Lemma 3.10
CF(N()) =NNF =N,
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i.e. Ny is self-centralizing in F. Assume 1 # 7 € Ny N N,. Then
So = Fixs(No) = Fixs(7) = Fixs(Ng) = So,

which implies that v € Ng(Np), i.e. No = N{.

(¢) Set R =O(F) and X = NoR. It follows that X satisfies the assumptions
of [5, Lemma 4.2]. Since |Ny| > 2 we have X = Ny x R and hence R = 1 by
Lemma 3.10. O

Lemma 5.9. Let NJ € F — {No} and set Fy = (No, N;). Then:
(a) O2(Fy) = Nn,(Ng )Ny (No) is elementary abelian of order 22n-2,
(b) Fo/O2(Fp) ~ Sym(3).

Proof. We show that:

(1) There exists a pair No, Ny, which satisfies assertions (a) and (b):

Pick v € G such that [N N N?| =271 ie. the assumptions of Lemma 5.4
are satisfied. We know that |Fixs(No) NFixs(Ny)| = 2771, i.e. by choosing the
notation in a suitable way we may assume that Nj € F. Moreover neither Ny
nor Ny are subgroups of P = O2((N,N7)), so that Fy/(Fy N P) ~ FyP/P ~
Sym(3). Now assertions (a) and (b) follow by [8, 2.8].

(2) We have F/OQ(F) >~ L"L(Q)7 AG, A7, A& Ag, Mgg, M23, or M24.

The possible structures of F'/Oy(F') are listed in [8, Theorem A] (by Lemma 5.8
the assumptions of this theorem hold). The cases F/O2(F') ~ L,,(q), Us(q), or
Sz(q), ¢ > 2 are ruled out by (1). The remaining cases imply (2).

Assertions (a) and (b) are now a consequence of (2). O

Proposition 5.10. Let N7 be an element of C —{N}. Then [INNN7Y| =2""1,

Proof. Assume that Fixs(Ny) N Fixs(Ny) = 0. Then N centralizes Ny, i.e.
Ny < Cg(No) = N and Nj = Ny, follows. But then N = N7, a contradiction.
Hence Fixs(Ny) N Fixs(Ng) # 0. Thus Fy = (Np, Nj) satisfies the as-
sumptions of Lemma 5.9. In particular [Nyy(No)| = |Nn,(Ng)| = 2"~ and
[Nng (No), Ny, (Ng)] = 1 by Lemma 5.9. Thus Ny (No) fixes So = Fixs (N, (N7))
and thus &; too. It follows that Nys(No) normalizes N. Assertion (a) of
Lemma 5.6 completes the proof. O

Proof. (Theorem 5.1) This theorem is an immediate consequence of Lemma 5.4
and Proposition 5.10. O

6 Recognition results and examples

We will show that the existence of more than one extension group, shows that
an extension of a DHO or an APN function is, in fact, at least a two-fold iterated
extension. Moreover we shall generalize this result if there are more than three
extension groups and give a direct construction of the k-fold extension in this
case, as well as some of its automorphisms.
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We illustrate our results on extension groups by some examples. We also
comment, how the results on automorphism groups of the next Section 7, fit
into these concrete examples.

In this section the symbol S denotes the extension of a bilinear DHO Sg
in the DHO case, while in the APN case this symbol denotes the graph of the
extension F' = Fy, y, of quadratic APN functions fy and fi;. We shall assume
in both cases that S is ambient in the defining space and in the APN case we
additionally assume that F' is fully ambient. In particular by Theorem 3.6 weak
extension groups are actually extension groups and the results of Sections 3
and 5 are available.

Theorem 6.1. The following statements hold.

(a) Let S be a DHO of rank > 6, which is ambient in its defining space and
which admits at least two extension groups. Then

S§=385 8;=355

where Sg is a symmetric bilinear DHO, i.e. S is a two-fold extension of
a symmetric DHO.

(b) Let Fy, s, be the extension of an APN function of rank > 6, which admits
at least two extension groups and assume that fo and fi are ambient in
their defining space. Then fo = Fg 4, and fi = Fy, 4, with quadratic
APN functions gy and gy, i.e. F is a two-fold extension of quadratic APN
functions.

We prove this Theorem by a series of lemmas and distinguish the APN and
DHO case.

6.1 The DHO case

Let M, N be two extension groups of a DHO S of rank n+1 and with an ambient
space U of dimension 2n + 1+ m. Denote by Sy, S1, the orbits of N = Ny x N;
and by 7o, 71, the orbits of M = My x M;. For i = 0,1 we set

VN = (SNS' |8, €S, S£S), VM=(SNS"|S,S €T, S+,
YN = VN AV, YM = yMAyM,

Finally, for i = 0, 1 we define MN = NM(N), Mi,N = ]\7]\/[1(]\/v)7 NM = NN(M),
and N; v = Ny, (M). By Lemma 5.4 and Proposition 5.10 we have |My| =
|NM| = 22n=1 and |Mi,N‘ = ‘Nz,M| = 2n—17 1 =0,1.

Lemma 6.2. With the above notation we have:
(a) YM CUN and YN CUM.
(b) dmYMNYN >m —n+1.
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Proof. (a) Assume y € YM — UN. Pick 7 € No, 7 € Moy x My n. By
assertion (c) of Lemma 5.4 the elements commute and we have

y1+7)1+7)=y(1+7)1+71)=0,

which shows that y(1+7) € (Y™ NVJ) — Y. Pick u € My — Moy x My N.
Then Vi¥u = V¥, As p centralizes Y™ we see that

YMAVY =@ MnvMu=y"nvy, ie YMnVY cyMN

This implies y(1 +7) € Y™ N Y™ a contradiction.

(b) Let S € SoNTy, ie. VI = (SNVI)@YN. We first note that ViV ¢ UM:
Otherwise V¥ = V¥ u C UM (p as above) and it follows UY = UM. If, however,
8" €SN Ty, then SNS' CUN but SNS’ € UM, a contradiction.

Now (a) and the modular law imply that

UMV = SnvdnuMyeyn
and it follows that
VN =(SnSYe SNV nuMy ey

follows. _
Let S be in §; N 7y. Then by symmetry

vl =6nS)e SnvynuMyeyV
with §' € §; N 71. Since UY = (SNVY) & (SN VY) @ Yy, we finally obtain
UN=(Sns) e SNV nuM e (Sns)a (SnvyNnuMyeyV.

Moreover, as UN and UM have codimension 1 in U we see that UN N UM has
codimension 1 in UY and (SNVI NUM) @ (SNVINUM)a YN CUNNUM.
Soif SNS" = (z) and SN S = (Z) then

UNnUM =+ SnV¥nUuM e SnvynuM)yayh.

We claim that Y™ C (SNVN nUM)a (SNVNNUM)a YN,
Otherwise, there exists w € Y™ of the form

w=z+zZ+s+s+y

withs € SNVYNUM, 5 SNV NUM, and y € YV,

Let 1 # 7 € Mon. Then 0 # u=2(1+7) € SNV NUM, 0 £ =
147 e SNVNNUM y1+7) e YN, and 0 = s(14+7) = 5(1 + 7). In
particular w7t # w, a contradiction. The claim follows.

For w € YM we again write w = s + 5 + y with s, 3, y as above. Then

s+s+y=w=wp=su+su+ypu,
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so that
s=3u (mod YY), §=su (modY?™).

Therefore

MLy yNn((Snvr nuM) +vN) /v =0
and it follows that

dimYM /(YN YY) =dim(YM +YV)/YN <n-—1.
This finally implies that

dim(Y¥ Ny M) >dimYY —(n—-1)=m—n+1.

Lemma 6.3. With the above notation we have that:
(a) S(0)={SNVF | S €S} is a DHO on V7.
(b) The group Mo n x My n induces an extension group on Vi .

Proof. Part (a) is obvious.
(b) From assertion (b) of Lemma 6.2 (and with the notation of the proof)
and dim V¥ = n + m we deduce that

VN =SnSYoSnvdnuMao @ nvnuM e YMnyh).

Also <Sl ﬂSgﬂVON | 51,52 € SoNTy, S1 # SQ> - (SQ%NOUM)@(YMQYN)
and <Sl DSQDVON ‘ 51,95 € Sy ﬂ'Tl, S1 ;'é 52> - (S/ﬂ‘/ONmUM)@(YMﬂYN).
As M; n acts regularly on Sy N 7; and fixes Sy N 7; pointwise {i,5} = {0, 1},
we deduce that Moy x M; n satisfies axioms (E1)-(E3) of a weak extension

group. Then by Theorem 3.2 My ny x M n actually induces an extension group
on V{V. O

The assertion of Theorem 6.1 for the DHO case is a consequence of Lemma 6.3
and Theorem 3.2.

6.2 The APN case

Let M and N be the linear parts of two extension groups of an n+1-dimensional
APN function, with an ambient space of dimension 2n+1+m. Denote by Sy and
81, the orbits of N = Ny x N and by 7y and 77, the orbits of M = My x M;.
For i = 0,1 we set

VN =(z+2' |22 €S;), VM= (v+2'|x,2' €T),

YN:‘/ONQX/IN, YN[:VOMQ‘/IM,
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We choose the notation such that 0 € Sy N 7y, in particular, we have Mg = My
and No = Ny. For i = 0,1 we define My = Ny (N), M; v = Np,(N),
Ny = Ny(M), and N; p = Ny, (M). Finally, we set H = (N, M) and denote
by E the third extension group in H (see Lemma 5.4). By our assumption S is
the graph of a function F' = Fy, r,, such that f; : F§ — F3" is a quadratic APN
function ambient in Fy @F5". It follows from Remark 3.3 and Theorem 4.4 that
Cy(N) = YN and dimU/(V{¥ + V{¥) = 1 and by Lemma 5.4 the analogous
assertion holds for M and FE too.

Lemma 6.4. For each 2-set {R,Q} in {E, M, N}, the vector space UR N U@
has codimension 1 in UE.

Proof. As 0 € Sy we have V¥ = (Sy). We know U = (v) @ UV for some v € S.
Hence v € S; and S is contained in the flat v + V{. Since v + VN =" + V¥
for all v’ € S, we even have U = (v') ® UYN. Pick v € S N Ty and suppose
that UN = UM. Then U = (v) @ UN = (v) + UM = UM a contradiction. The
assertion of the lemma follows by symmetry. O

Lemma 6.5. We have YE C U@ for each 2-set {R,Q} in {E,M,N}.

Proof. By symmetry it suffices to assume that R = M and @ = N. Assume
that y € YM — UN. Pick 7 € Nom, 7 € My n x My n. By assertion (c) of
Lemma 5.4 the elements commute and we have

y(1+7)(1+7) =yl +7)(1+7)=0

which shows that y(1+7) € (Yar N V{¥) — Yy. Pick p € My — Mo n x My y.
Then Vi¥u = VN, As p centralizes Y™ we see that

YMAVY =@ MnvMu=y"nvy, ie YMnVYN cyN.
This implies that y(1 +7) € Y N Y™ a contradiction. O

Lemma 6.6. For cach 2-set {R,Q} in {E,M,N}, we have YENY® =YF
YyMnaynN,

Proof. We know that Y% = Cy(R). Then YENY® = Cy(H) as H = (R, Q)
and the assertion follows. O

Lemma 6.7. For each 2-set {R,Q} in {E,M, N}, we have URNU% =UF N
uMnUnN.

Proof. By symmetry it suffices to assume that R = M and Q = N. Suppose
that W = U nUM N UY is a proper subspace of UM N UYN. This shows by
Lemma 6.4 that W has codimension 3 in U. Let v € U — U™. We know that
the map ¢ : N — UN /Y'Y defined by ¢(7) = v(1 + 7) is an isomorphism of the
abelian groups N and UV /Y.

First we observe that Oy (H) centralizes the quotient U/ (UM NUYN). Namely
if 7 € Ox(H) = (Nar, My), then 7 fixes UN and UM and therefore we have
U(l4+7) CUMNUYN, which shows the claim.
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By symmetry O(H) also centralizes the quotient U/W. Now Ny < Oo(H),
which implies that ¢(Nys) € W/ YN (note that by Lemma 6.5 Y~ C W). This
implies that 22771 = |Nys| = [¢(Nar)| < [W/YN| = 2272 4 contradiction. [

Lemma 6.8. We have V¥ NYM C YN VNNYM C YN, and dim(YENYMn
YV)=dim(YMnYN)>m—n+1.

Proof. First we observe that V.V ¢ UM: 1If for instance V{¥ C UM, then also
VN =VNu CUM for p € My — (Mo,n x Mi n) contradicting Lemma 6.4.

Hence there exist elements sq € (Vi NSp) — (UM N V{¥) and (considering
the action of ;1) we may even assume so € T;. Thus V§¥ = (so) @ (UM N V).
Apply u and we obtain ViV = (s1) @ (UM N V{¥) with s; = sou. Note that
sofi € S but sy € S. From Lemma 6.4 we deduce that

UN = (s0) @ (s1) ® (UM N VgY) + (UM n V).

Note that UM NUN = (sg+s1) ® (UM NVY) + (UM NV)) as this space is p-
invariant. We recall that |S| = [(S+YN)/Y V| ie. VV/YN = (So+YN)/ YN,
As so+ YN ¢ (UM N VYY) /YN, we deduce that dim(W¥ +YN)/YN =n—1
for W = (So N To) and hence Vi¥ N UM = W + Y. Similarly, we obtain
that V¥ NUM = WV + YV with W} = W p.

Claim: We have YM C (UM N V) + (UM N VYY)

Suppose, YM ¢ (UMAVM)+(UMNVY). Then there exist elements w € Y™
of the form
w=so+s +u+u +y

withu € W, v € W andy € YN. For 1 # 7 € My y we have 0 = w(l+7) =
u(l+7) =u/ (14 7) and y(1+7) € YN. This shows that so(1+7)+s1(1+7) €
YN As so(l+7) € VIV NnUM, s51(1+7) € VF NnUM, we also have that
so(147),51(14+7) € Y. Moreover soT # s¢ are different elements in S. Hence
so+ YN and sor 4+ Yy are different elements in VON / YN a contradiction. The
claim follows.

Let w=u+u'+y € YM u,u,y as before. Then

utu +y=w=wp=up+up+yu,
showing v/ = up (mod YY), u = v’ (mod Y¥). This implies that
YM YNy vV nuM)yN =0
and therefore Vg" NYM C YN and
dimYM/(YM YY) = dim(YM + YY) /YN <n-1.

We obtain that dim Y™ NY®Y > dimY™ —n+1=m —n+ 1. The assertion
VN NYM C YV follows by symmetry. O
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Lemma 6.9. Set V,; = (x+y | z,y € $;NT;), 4,5 =0,1. Then dim(V; ; +
YMAYN)/(YMAYN)=n—1 foralli,j and dimYM NYN =m —n+ 1.
Moreover, VN NUM)/(YMNYN) = (Vig+YMNY V) /(YMnYN)e (Via+
YMAYN)/(YMAYN) fori = 0,1, and the similar assertions hold for (VM N
UMy /(YMnyN).

Proof. We have V;; C UM nUN for all 4,j. By Lemma 6.8 Voo N Vo1 C
VM AVMNVYN =YMnVN CcYMnyN de (Vip+YMnyYN)/(YMn
YN (Vii+ YY)/ (YMnyN)=0.

Also [(SoNTo+ (YMNYN)/(YMNYN)| =271 showing that dim(Vpo +
(YMAY M) /(YMNYN) > n—1. By symmetry dim(V; ; + (Y™ nYN))/(YM N
YN) >n —1 for all i,j. Therefore again by Lemma 6.8

m+n—1=dimVonUM >2(n—1)+m—-n+1,

so that equality must hold and we have dim(Vp ; + (Y™ nYV))/(YM nYPN) =
n—1and dimYM NYY =m —n + 1. By symmetry all assertions follow. [

Proof. (of Theorem 6.1) Let VN = R; @ YV for i = 0,1. By Theorem 3.2
there exist quadratic APN-functions f; : R; — Y~ such that So = {2 + fo(2) |
z € Ro} is the graph of fo and v+ &1 = {z + fi(2) | z € Ry} is the graph
of fi. Here U = (v) ® UYN. Without loss of generality we may assume that
v € 8§ N Ty. We shall show that both graphs admit extension groups. The
assertion of Theorem 6.1 is then a consequence of Theorem 3.2.

Case (V{Y, fo) We claim that My y x M; y is an extension group. Con-
ditions (E1) and (E2) of the definition of extension groups follow immediately
by the definition of My x M; . We have Vo; = (SoN7T;), j = 0,1. By
Lemma 6.9 we get Cyv (Mo,n x My n) =Y = YMAYN dimVy/ (V¥ NnUM) =
Vo/ Vo0 + Vo1 +Y) =1, and dim(Vo o + Vo1 +Y)/Y = 2(n — 1). This shows
(E3) and therefore My x x M; y is a weak extension group of fo. Since fo is
quadratic, we deduce by Theorem 4.4 and Remark 3.3 that this group is in fact
an extension group.

Case (VY| f1) We first observe that r : My y — U defined by r(7) =
v(1+7), is a 1-coboundary (i.e. 7(77") = r(7)7" +r(7')). Thus ¢: My ny — U,
defined by ¢; = ¢, +r(7) (here T = 7+ ¢, ), is a 1-cocycle. We define 7 = 7 +¢;
and MLN = {7 | 7 € My n} and observe that My n X MLN is elementary
abelian, as the 7(7)’s lie in Y™,

We claim that this group is an extension group. Clearly, as v is fixed by
Mo, N, the set v+ (S1 N 7o) is fixed pointwise by this group and this group acts
regularly on v + (§1NTy). Forv+u €€v+ Sy and T € MLN we compute

(v+u)T = (vT +7(7)) +uT = v+ uT.

This shows that MLN fixes the set v 4 (S; N T;1) pointwise and on v + (S; N 7o)
this group acts regularly. Hence conditions (E1) and (E2) hold. Condition (E3)

follows, again by Lemma 6.9. Thus Moy x M; n is a weak extension group.
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The same argument as in the previous case shows that this group is in fact an
extension group. O

In [4] the diagonally represented DHOs were characterized as those DHOs
that admit at least three (and thus infinitely many) iterated extensions. Theo-
rem 6.1 leads to:

Corollary 6.10. Let S be a DHO of rankn+k, n > 4, k > 2, which admits at
least 2% extension groups. Then there exists a symmetric, diagonally represented
DHO Sg of rank n, such that S is the (k + 1)-fold extension of Sgs.

Proof. Let N be an extension group with orbits S;, ¢ = 0,1 and set V; = (SNS’ |
5,58 € S;,S#5"). Let E, M be two extension groups # N. By Lemma 6.3 we
have that S(0) = {SNVy | S € Sy} is a DHO and the groups Ng,(N) x Ng, (N),
R = E, M, induce extension groups on S(0).

Assume that both groups induce the same extension group on §(0). So for
€ € Ng,(N) x Ng,(N), there exists an element p € Nz, (N) x Ny, (N), such
that ep fixes each S € S(0). This implies that e lies in the common normalizer
of the groups Ny and N;. As Nj acts faithfully on Sy, we see that ey lies in the
centralizer of Np, which is N (see Lemma 3.10). Thus ¢ € (N, M). However
this group contains precisely three extension groups (Lemma 5.4). Thus S(0)
admits at least [TTA] = 2k=1 extension groups. By Theorem 6.1 S(0) is the
2-fold extension of a symmetric DHO &', and S is, in fact, the 3-fold extension
of §’. By [4, Thm. 3.2] & is diagonally represented. Now a routine induction
finishes the proof. O

For APN functions we have an analogous corollary:

Corollary 6.11. Let F' = Fy, r, be a fully ambient APN function of rank n+k,
where n > 4 and k > 2, which admits at least 2k extension groups. Then there
exist quadratic APN functions gg, g1 of rank n, such that f;, for i = 0,1, is the
k-fold extension of g;.

Proof. We know by Theorem 3.2 that fy and f; are quadratic APN functions
and by the proof of Theorem 6.1 (APN case), we know that for an extension
group E = Ey x Ey # N the group Ng,(N) x Ng, (N) is the linear part of an
extension group of f;, i = 0, 1. Our claim follows by induction using Theorem 4.4
if we show that the groups of the form Ng,(N) x Ng, (N) induce at least 281
extension groups on each f;. By symmetry it suffices to show that fy admits at
least 2~ extension groups.

Let E = Ey x Ey and M = Ey x M; be the linear parts of two extension
groups that are not equal to N, and which induce the same extension group

on Sp, the graph of fo. Then for each € € N (V) x Ng (N) there exists an
element 77 € Nyz (N) x Cgz, (N), such that 7 fixes each vector in Sy. As &

normalizes N, we see that €1 centralizes N1, i.e. £ € N. Hence E < (N, M).
By Lemma 5.4 we see that there are at most two extension groups inducing
the same extension group on fy. As in the proof of the previous corollary we
conclude, that fy admits at least 2*~! extension groups. O
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6.3 A non-recursive version of the k-fold extension

In this subsection we present, for k£ > 2, an explicit non-recursive representa-
tion of a k-fold extended DHO, respectively of a k-fold extended APN function.
These non-recursive representations allow a concrete description of 2% — 1 ex-
tension groups and and a group GL(k,2) (compare also Section 7).

We start with the DHO-case. We say a DHO Sg, f: X — Hom(X,Y), is
diagonally represented by z € X, if and only if for its diagonal map, z§ = x((x),
we have that 0 = xzf(z). In [4] it is shown that DHOs that admit at least
three iterated extensions are diagonally represented. By [4, Theorem 3.2] the
extension Sy of a diagonally represented DHO Sj is isomorphic to SB’ with

(u,x)B(v,e) = (v + ue + (vu)z,zB(e)), (u,z),(v,e) € X (1)
For this subsection we will use Sz as extension of Sg.

Notation. For some I-dimensional Fa-space W with a fixed basis {f1,..., fi},
denote by A2(W) the second component of the exterior algebra over W, i.e. the
(é)—dimensional space with basis {f; Af; |1 <i<j<I}. Letu=),ufi,v=
>, vifi. Define

W x W — Fo, u-UZZézluivi»
A WXW =AW, uAv=> 1 iq iy +vju)fi A fj
x: WxW—=W, u*’UZZizluivifi

Observe that u * © = u holds.

Let V = V¥ be a k-dimensional Fy-space with basis {e1,...,e,}. Further-
more, let {b1,...,b,} be a basis of the Fy-space X. Set X* = V* @ X, and
define ¥ : X* — Hom(X* A2(X*)@Y) by

(u,z)B%(v,e) = (uAv+vAz+une+ (uxv) Az zb(e)). (2)

Note that A2(V @ X) decomposes as A2 (VB X) = A2(V)d (VAX)DA%(X),
where V' A X denotes the space with basis {e; Ab; | 1 <i<k,1<j<n}. Set
YE=N2(V)a(VAX)®Y CA2(XF)aY.

Lemma 6.12. Let £ > 0 and § : X — Hom(X,Y) define a DHO Sp that is
symmetric and diagonally represented by z € X. Then Sgx is isomorphic to
the k times iterated extension of Sg. Moreover Bk is symmetric and diagonally
represented by (0,2) € X* and X* © Y* is the ambient space of Sgk.

Proof. By definition (Equation (2)) 8* is symmetric and a direct verification
shows that it is diagonally represented by (0,2). Moreover it is obvious from
the definition that L/Y* = 0, where L is the space generated by the images
of B¥(v,e), (v,e) € X*. Thus the ambient space of S« is a subspace of X* &
Y*. The claim about the ambient space follows by dimensional reasons from
Theorem 2.1, as soon as the main claim is proven.
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For k =0, A2(VY) and V? A X are O-dimensional, thus Sgo is isomorphic to
Sp. Let k > 0; we will show that Sgr is the extension of Sgr-1.

Set X' " = Fy x XF~1 and Y XFl YRl We define 7: X° L @
k

Y 5 X* @ Y* sending X onto X* and Y ' onto Y* as follows.

X5 (0,7) = @+aer) € XF, Vs (@) = G +TAer) € YF,

(witha € Fo,7 € X¥~! andy € Y*!). Let S, be the extension of Sge—1. Using
ug, v, instead of w and v, Equation (1) gives that

(g, T, 7)Y (Ve B, €) = (i (T, @)+ (T, €)+ (o) (0, 2), (T, 2) B4 (T, e)) € V.

We have
g (T, ) + ug (T, ) + (vpug) (0, 2) = (Vi + ugpT, Vix + uge + (Vrug)z)

and
(@, z)B* 1 (v,e) = (WAT+TAx+TAe+ (T*T) Az, 28(e)).

We apply 7 to (ug, @, z)vy(vg, U, e) and obtain
((vgTu+ug®) Ae+uAv+(vgx+uge) Neg+oAT+uNe+((U+uger ) (T+orer ) ) Az, z5(€)).

But this is (7 4 uger, ©) B (T + vier, €).
U

Let § = {S(v’e) | (v,e) € Xk}, with S(v’e) = {S(v,e)(u,x) | (u,z) € Xk},
Sw,e)(u, ) = (u, 2, (u, )% (v,€)), be the k times iterated extension of Sg.

Notation. For an arbitrary, but fixed ¢t € V* define the partition
S = {Sw,e) | (v,e) € Xk ov.t= a}, a€Ty,

of S. Let t+ = {u € V | u-t = 0}. For an arbitrary, but fixed s € V \ ¢ let
= .V — t+, defined by w = w + (w - t)s, be the projection onto ¢+ in direction
s. For (w, f) € X* let

nl,p=1+ ( A (wbtt)Bvaf ) € Hom(X* o Y* X* @ Y*), with
w, f
A, = ( tow f)f ) € Hom(X*, x*)
B., = ( NO NS+ (BN E+ (4N (-t%(%f) ) € Hom(x*,Y")
(Tin N@) A A f+mnxw Az + (A) oAz ((A)zB8(f)
Dl = 0 Tin A maB(f) | € Hom(Y",Y")
0 0 0
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with respect to the decomposition X¥ = V@ X, Y* = A2(V)@a (VAX)®Y
and where

A V= A2(V), v Y vivi(es A ej),
min s AHXF) = XF (vAu) = (v-tu+ (u-t
Ao XFE = A2(XE) v v Aw,
it Vo, v vt
xw: V=V, VU kW,
The last three maps should be understood as applications of the corresponding
bilinear map on the “omitted” argument. The proofs of the subsequent lemmas
on the automorphisms are obtained by straightforward standard verifications

and therefore are omitted. The following useful identities are also straightfor-
ward to prove:

uhv = Au)+ A(u+v)+ Av),
(u-v)u+ Alw)mya,
(uxv)-t+ (uAv)-A),

(v-t)(u-t) =

Set Ni = {nl, ; |w-t=a,fe X}, N'" = (N§, N{). Note that N, does not
depend on the choice of s in the definition of w (choosing § € V' \ t* instead

would lead to the maps ni}+w.t(s+§) s» & permutation on the elements of NY).

Lemma 6.13. The group N! fizes S, elementwise and acts regularly on St .
More precisely,

S(v,e) (’LL, x)nfu,f = S(v,e)-l—((v-f—w)'t)(w,f)((uv f) + (u ' t)(’tfg f))

Corollary 6.14. Lett € V*. Then N' = N} x N is an extension group of S,
the k times iterated extension of Sg, whose orbits on S are S§, St. The k times
iterated extension of Sg has 2k — 1 extension groups.

Notation. Let « € G = GL(V) and (a; ;), the matrix of the map « with
respect to the basis e;, i.e. ua = Z” u;a; ;€;. Denote by a; the i-th row of
(@i ;). Define

Nz
Aa a an Pa
/’La_( Fa)’ Aa—( 1)7 Fa— (ETN )

where an = A2(a® 1x) € GL(AYX(V @ X)), i.e.
an: AXV) = AR(V), vAu— vaAua,
apn: VAX—=>VAX, vAz—vaAz, and
pa: ANH(V) =V, ei A\ej i a; *aj.

A comment about the map p : G — Hom(V,A?(V)) given by a +— po: It
is well known, that the FoG-module S?(V) is indecomposable, has the unique
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submodule A?(V), and that S?(V)/ A% (V) is isomorphic, as an FoG-module,
to the natural module V. Hence p, can be interpreted as an element of the
extension product Ext'(V, A%(V)) and

Gan (G b))
stands for the representation of G on S?(V).
Lemma 6.15. Let o € G. Then
Sew,e) (W, Tt = S(va,e) (ua, T).

Proof. A straightforward verification. Observe that ua x va = (u* v)a + (u A
V)Pa- O

As the hyperplanes t* of V form one orbit under G, the partitions (S§, St)
and thus the extension groups form one orbit under the automorphisms {p, |

a € G}.

We now turn to the APN case and continue to use the notation introduced
in the DHO-section. Let £f(V) = (f, | v € V) be a family of (APN) functions
fo: X =Y (indexed with v € V). Define

Feyy XE S YR (vz) = (A),v A, fo(z)). (3)
Observe that for & = 0 we have f(V9) = (fo), A2(V?) and VO A X are 0-

dimensional and hence Fyoy is fo itself.

Lemma 6.16. Let k > 0. Then Fy(y) is the k-fold extension with respect to the
functions in the family £(V). More precisely: Let V C V be the space generated
by e1,...,ex_1 and fv = fotre,- Then Fyyy is isomorphic to the extension of
the functions Ff(V) and F?(V)'

Proof. The extension of fy, f1 is defined to be Fy, 1, (v,z) = (vz,vfi(z) + (v +
1)fo()), (v,x) € F2 & X. In our situation we put fo = Fyr), f1 = Fyr) and

we have to adapt the notation by substituting x by (v,z),€ X¥~1 =V & X and
v € Fy by v, With this the extension is F' = Fy, p, : Fox XF~1 — XF=1xyk=1,
defined by

F(og,v,2) = (vk(0,2), o6 f1(0,2) + (1 + vk) fo(0, 7))
Then fo(5,2) = (A(E)8 A, fo(x)), f1(B.2) = (A(5).5 A 2. foper (2)), and so
F(vkvﬁvx) = (vk(aaw)’ A(@)vﬁ Nz, 'ka5+ek (x) + (1 + vk)fﬁ(x))

Apply the projection 7 : (Fy x X*~1) @ (XF~1 x Y*=1) = X* @ Y* as defined
in the proof of Lemma 6.12. We have

F(o+vger,z) = (AD) +vp0Aer, DA T+ vger AT, Uk fore, () + (1 + i) f5(2))
= (AWw),vAz, fo(z)) = Frvy(v,x), with v = vper + 0.

O
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We now turn to Extensions Fg(yy which are quadratic APN functions. By
Proposition 2.6, F¢(y) is equivalent to a k-fold extension where the f,,, forv € V,
are all equal to the a quadratic APN function f. From now on we restrict
ourselves to this case.

Notation. Denote the graph of Fyyy by S = Sy, = {S(v,z) | (v,2) € X*}
where,
S(U,JJ) = (’U,J?, Ff(V) (’va)) = (U,QS,A(’U),’U Nz, f(l'))

Let a € G, and let L(a) : V= V AV be the function u — >, u;(A(a;)),

with a; the i-th column of the matrix of o with respect to the basis ey, ...e.
Define
« L(«@)
1
fho = Qan € GL(X*aYPh).
QA
1

Lemma 6.17. We have
S(v,2) e = S(va,z), ac€q,(v,z)ec Xk

Proof. A straightforward verification. Observe that A(u)ay = A(ua) + uL(a).
O

Notation. We define
My =1+ ( . g > » Ty =My + (W 1)(w,0,A(w),0,0),

where

D = (7Tt/\ A Ez)

Lemma 6.18. We have
Sw,z)nt, =S+ (v+w)-twx), teV*
Notation. We define

1 -ty xt Ay + A(w-t)y tf(y)
1 B(w - ty)
5:‘1)7?/ = 1 Tin NY ’
1 TinB(Y)
1
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and set »

t
6w,y = 671),1/ + (U} : t)(oa yvovoa f(y))
Lemma 6.19. We have

S(v,x)dy,, =S, 2+ (v+w)-ty), teV”

Hence

v zgfvwﬁfU:S(v,x) =S+ w+w)-tw,z+ (v+w) ty), (wy)e X",

w,y
and thus we have the extension groups.

Corollary 6.20. Lett € V* a € Fy, N = {7}, , |w-t=a,wec V,y € X} and
St ={Sw,z) |v-t=a,v € V,x € X}. The group N} stabilizes St element
wise and acts regularly on S, ;.

As in the DHO case, the 2¢ — 1 extensions groups are conjugated by the jq.

6.4 Small DHOs and further examples

We now give examples with more than one extension group. We start with a
discussion of the DHOs of small rank, which naturally lead to the Huybrechts
DHOs and the Buratti-Del Fra DHOs, being examples of DHOs with more than
one extension group. We end the subsection with examples of APN functions
with this property.

We modify the definition of a DHO & of Section 2 by defining S as a family,
instead of a set, of subspaces. For n > 2 both definitions coincide due to the
DHO condition that any two members of a DHO intersect 1-dimensionally. With
that the (uniquely determined) DHO of rank 0 is the null-space and the DHO
of rank 1 consists of two copies of F5. The DHOs of rank 2 and 3 are known
(see e.g. [5, Appendix]).

The DHO of rank 0 can be realized as Sg, for 3 the zero-map. It is diagonally
represented with respect to zero. Applying the extension (still in the form of
Equation (1)) leads us to the DHO Sj of rank 1, with A3 the zero-map. The
DHO of rank 1 has the trivial group as extension group.

Further extensions of the DHO of rank 1, with respect to z = 0, lead to
the standard form of the Huybrechts DHO Sg with z8(e) = « A e. Thus the
Huybrechts DHO of rank & can be seen as the k-th extension of the DHO of
rank 0, i.e. the null-space. This also nicely ‘explains’ the the 2¥ — 1 extension
groups of the Huybrechts DHO.

The DHO of rank 1, S5 (B(e) = 0), is also diagonally represented with
respect to z = 1. The DHO of rank 2 is unique, has a unique elementary
abelian translation group and only one class, of length 3, of extension groups.
Thus the extensions of the DHO of rank 1, with respect to z = 1, lead to an
isomorphic representation with another ‘5.
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Denote the twofold extensions of the DHO of rank 1, with respect to z as
Ss., z € {0,1}. Again, there is only one DHO of rank 3 in F§ with a translation
group, thus Sg, and Sg, are isomorphic. However the standard translation
groups of these two representations differ. The standard translation group of
Sp, is normal and the standard translation group of Sg, is in a class of length
7 in the full automorphism group (these are the two only classes of translation
groups for this DHO, see [5, Appendix]). The DHO has only one class, of length
7, of extension groups (as it should being the Huybrechts DHO).

There are two further DHO of rank 3; both have no extension groups.

For each k > 2, the k-fold extension of the DHO of rank 1, with respect to
z =1, S’gﬁ is the Buratti Del-Fra DHO (which has 2¥ — 1 extension groups).
An easy way to see this identification, is to observe that 82’1 is identical to a
coordinatized form of the Buratti Del-Fra DHO of rank 4 given in [4, Example
3.6.]. Then use the fact that the Buratti Del-Fra DHO of higher rank can be
obtained as an iterated extension of this one (see again [4]).

Set X = F2 with canonical basis B = {ey,...,e,} and Y = A%(X). The
Huybrechts map A : X — Y, A(z) = ZKj x;xj€e; N ej, as already defined in
Section 6.3, is a quadratic APN function. Analogously to the Huybrechts DHO,
it is the k-fold extension of the zero-function (of rank 0) and thus has 2% — 1
extension groups.

6.5 Non-quadratic extensions of APN functions

We now discuss non-quadratic extensions of quadratic APN functions that have
the property that N is not normal in the automorphism group.

Example 6.21. Set fo = A, the Huybrechts map, e;; = e; A e; and let n > 4.
We consider extensions F' = Fy, ¢, where fi(z) = fo(z)a, o € GL(Y).

Claim: The extension F' is not quadratic if « is a transvection in GL(Y). In
particular F' is not quadratic in the following examples (a) and (b).

Assume the converse. By assertion (b) of Theorem 4.4 there exists ¢ €
Autop(fo) of the form ¢ = A Zz ) On the other hand, by Theorem [5,

Thm. 3.10] Autop(fo) ~ Autop(#,), where H,, is the Huybrechts DHO of
rank n, which is the alternating DHO associated with fy in the sense of The-
orem [5, Thm. 24]. By [9] Aut(#,) ~ 2" - SL(n,2), which implies that
Autop(fo) ~ SL(n,2). Note that ¢ acts on Y = Cy(T), T the translation
group, as a transvection «. But, as an SL(n,2)-module, Y is isomorphic to
A%(X), with X the natural SL(n,2)-module. Since n > 3, a transvection in
SL(n,2) does not induce a transvection on Y ~ A%(X), a contradiction. This
shows the claim.

(a) Define the linear map o € GL(Y) by (32, ; zijeij)a = 3, zijeij +
Zom—1€n—1,,. Define fi : X — Y by fi(z) = fo(r)a and denote by F' the
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extension of fy and fi. A typical element from Sy has (in coordinates) the form
0]z |0|z122, 2123, ..., X1%py -y T—1Tp)
and a typical element from S; has (in coordinates) the form

(L0 y | y1y2s-- Y1¥ns - s Yn—2Yn,> Y2Un + Yn—1Yn)-

Define 7 € GL(U) by (a |z |y | 2)7 = (' | 2" | ¥ | 2'), with ' = a + 23 + ya,
a' = (v1+212,Y2, 23+ 223, - - -, Tnt22m), ¥ = (Y1+212, T2, Y3+ 203, - -+, Ynt22.0),
and 2’ = (z12,- -+, Zn—2.n, 220 + Zn—1n)-

Claim: The map 7 is an automorphism that does not fix Sg or S;. In
particular G’ has more than one extension group.

Let v = (a | 2 | y | 2) be an element in §. Consider for instance the case
a =1yz = 1. Then v lies in S; (i.e.  =0) and it has the form

v=(110y|v1y2, - Yn—2Yn,Y2YUn + Yn—1Yn)-

Then

T = (0 | Y, | 0 ‘ Y1Y2, - -+ Yn—2Yn, Y2Yn + (yZyn + yn71yn))
= 0]y, |10|yy2s-- s Yn—2UnsYn—1Yn)

lies in Sp. For a = 1 and y2 = 0 again v lies in S; (i.e. = 0) and it has the
form

v=(110]y|vy2 - Yn—2Yn, V2UntYn—1Yn) = (L[ 0| ¥ | Y142, - - - s Yn—2Yn, Yn—1Vn)-

We compute v7 = v. Similar computations for v = (a |z | y | 2) € S and (a, x2)
equal to (0,0) or (0,1) show that v € Sy and v7 € S. The claim follows.

(b) Define the linear map v € GL(Y') by (3_;_; zijesj)a = 32, zij€ij +
Z1,26n—1,n- Define f; : X — Y by fi(z) = fo(z)a and denote by F the extension
of fo and f1. A typical element from Sy has (in coordinates) the form

0]z |0|z12e, 2123, ..., X1%py -y Ty—1Tp)
and a typical element from S; has (in coordinates) the form
(L0 y [y1yz, - ¥1Uns - Yn—2Yn, Y1Y2 + Yn—1Yn)-
Define 7, € GL(U), r = 1,2, by
(a]z|yl|2)n = (alr) [ z(r) | y(r) | 2(r)),
with (using the convention z;; = zj;)
1. a(r) =a+ zy + Yr,

2. xz(r)y = yr and x(r); = x; + 24 for i £ r,
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3. y(r)r = @, and y(r); = y; + 2y for i #r,
4. z(r) = (2127 ce 3 %10y 2235 - -y Zn—2,ny An—1,n + 212),

Claim: The maps 7,’s are automorphisms and |Sy N Spm; NSp72| = 2"~ 2. In
particular F' admits more than three extension groups.

We consider first the case 7 =71. Let v = (a | z | y | z) be an element in S.
CAsE a =0 (i.e. v € Sp, y =0). Then

or = (21 | 0, 242122, ..., TptT12y | 0, 2122, . .., Z12y | 122, . .., Tp—o@n, T1To+Tp_1Zp).
If z1 = 0 then v = v7 and if ;1 = 1 then
vr=(110]0,29,...,2n | T12Z2,...,Tp—2Tn, T1T2 + Tp_1Z,) € Si.

In particular So N Sp7y is the set of elements in Sy with z; = 0.
CasEa =1 (i.e. v € Sy, ¢ =0). Then

o1 = (14y1 [y, 0192, - y1n | 0 024+01Y2, - - Yn+Y1Un | Y1925 - -, (Y1Y2HYn—1Un) FY102)-

If y; = 0, then v = v7 and if y; = 1, then

o= (0]1,y2,.-,Un | 0| ¥1¥2, -, Yn—1Yn) € So.

Thus 7 is an automorphism.
By symmetry 7 is an automorphism too and Sy NSy7s is the set of elements
in Sg with 2o = 0. The claim follows.

7 Automorphisms

Let G be the automorphism group of a DHO or the linear part of the auto-
morphism group of an APN function. We assume that the conjugacy class C of
extension groups in G is not empty. We will determine the group H = (C) gen-
erated by extension groups. It turns out that the structure of H only depends
on the size of C. It will be shown that this group is the extension of a 2-group of
nilpotency class < 2 by SL(k+1,2), k > 0. The proof is purely group theoretic,
i.e. it does not depend on the action of the extension groups on the underly-
ing space. As a consequence we get a factorization G = HNg(N), N € C, of
the automorphism group. We assume again that X and Y are Fs-spaces with
dim X =n and dimY = m. We always assume

dim X =n > 4.

Theorem 7.1. Let § : X — Hom(X,Y) be a monomorphism that defines a
bilinear DHO Sp that is ambient in X @Y. Set G = Aut(S), S = Sg. Let C
be the set of extension groups, G* = (C) and N € C. Then G = G*Ng(N),
Ng(N) = NL, where L is given in Section 2. Moreover one of the following
holds:
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(a) B and B° are not isotopic, C = {N}, G is not transitive on S, and G is
equal to Ng(N).

(b) B and 3° are isotopic, C = {N}, G is transitive on S, and G = Ng(N).

(c) B and B° are isotopic, |C| > 1, G is transitive on S. There exists k
with k € {1,...,n} such that G*/P ~ SL(k + 1,2), where P = O2(G*).
Moreover Q = Z(G*) is elementary abelian of order 2"%, [P, P] < Q,
P/Q has order 2=kt " and all composition factors of G* on P/Q
are natural SL(k + 1, 2)-modules.

Remark 7.2. If G contains a translation group 7', we are in case (b) or (c).
Then |T: TNN|=2and 7 € T — (TN N) interchanges the two N-orbits. If
|C| > 3, then by Corollary 6.10 S is a symmetric, diagonally represented DHO,
in particular GG contains translation groups.

Theorem 7.3. Let f; : X — Y be quadratic APN functions for i = 0,1, which
are ambient in X @Y. Set F = Fy, 7, G = Aut(F) and G = A(F). Let C
be the set of extension groups, G* = (C) and N € C. Then G = G*Ng(N),
Ng(N) = NL, where L is given in Section 2. Moreover one of the following
holds:

(a) fo and f1 are not isotopically linked, C = {N}, G is not transitive on
S =S8p, and G = Ng(N).

(b) fo and f1 are isotopically linked, C = {N}, G is transitive on S, and G is
equal to Ng(N).

(¢c) fo and fi are isotopically linked, |C| > 1, G is transitive on S. There exists
k with k € {1,...,n} such that G*/P ~ SL(k + 1,2), where P = O2(G*).
Moreover Q = Z(G*) is elementary abelian of order 2"~ %, [P, P] < Q,
P/Q has order 2=kt " and all composition factors of G* on P/Q
are natural SL(k + 1, 2)-modules.

Remark 7.4. If G contains a translation group 7', we are in case (b) or (c).
Then [T:TNN|=2and 7 € T — (T'N N) interchanges the two N-orbits.

We prove the two theorems by a series of lemmas. The symbol S denotes
the extension of a bilinear DHO Sg (which is ambient in its defining space) in
the DHO case, while in the APN case this symbol denotes the graph of the
extension F' = FYy, j, of quadratic APN functions fo and f; (which are both
ambient in the same defining space). Also G = Aut(S) in the DHO case, while
in the APN case we have G' = Aut(F) and G = A(F) is the linear part of G.

By Theorem 5.1 C is at conjugacy class in G*, i.e.

C={N"|yeG.

Our main task will be to determine the group (C). By our assumptions all results
of Sections 3 and 5 are available. The starting point is the case |C| = 3, where

50



Lemma 5.4 provides the structure of (C). The general case will be obtained by
a somewhat tedious induction on |C|, which results in Theorem 7.11.

Again we only work in the DHO case as all arguments can be
carried over one to one to the APN case: Namely, we do not need the
linear representation of the automorphism group on the vector space U any
more, but only use the permutation representation on the set S. The following
proposition is part of the folklore on linear groups.

Proposition 7.5. Let W be a finite dimensional space over F, and G = SL(W).
For a subspace U of W let Gy = {0 € G | oy = 1, ow,u = 1} be the centralizer
of the chain 0 C U C W. If H is a hyperplane, then Gy — {1} is the set
of all transvections that act trivially on H. Let H be a set of hyperplanes,
D = Nyey H, dimW/D =k, and set X = (Gg | H € H). Let p be the
characteristic of F,. Then the following hold:

(a) X/Op(X) ~ SL(k, q).

(b) Op(X) is an elementary abelian p-group of order ¢*"=%) and O,(X) is
generated by the 0 € Gy, H € H, with ow/p = 1. Moreover Op(X) is the
direct sum of n — k natural SL(k, q) modules (with X/O,(X) ~ SL(k, q)
acting by conjugation,).

(¢) Let H be any hyperplane containing D. Then for any K € H there exists
a~y € X, such that H= K~ and Gy = G;.

(d) Let Uy and Us be subspaces of D such that Uy C Us and dimUs /Uy = 1.
Let E; = {0 € Op(X) | W( — o) CU;} fori=1,2. Then E3/E; is a
natural SL(k, ¢)-module.

(e) Let 0 € X, such that o normalizes each group Gg, H € H. Then o €
Op(X).

Lemma 7.6. Let NV, N° € C — {N}, be such that NV # N°, but NY N N s
equal to N° " N. Then:

(a) N,N7,N° are the elements of C that lie in H = (N, N%).
(b) Nn+(N) < Nys(N)N.

Proof. By Lemma 5.4 we can assume that 6 € H has order 3, so that N <H
too. Let Ty and 7; be the orbits of N9. Then N® has (as we have seen) the
orbits (Sp N To) U (S1N7T1) and (SoNT1) U (S1NTo).

Pick 1 # 7 € Ny7(N). By assumption 7 centralizes the group N°N N and
therefore this group leaves invariant Uy = Fixs(7) and Uy = S — Uy. So the
two sets are the union of the orbits of N° 0" N. But as N7 # N? we see that
{Uo, U} = {(So NTo) U(S1 NT1), (So NT1) U (S NTo)}, which shows that N
and N” have the same orbits. In particular these groups normalize each other
and (a) follows by Theorem 3.6.

By Lemma 5.4 Oy(H) = Ny(N?)Nys(N) and Ny~ (N) < Oz(H) and (b)
follows. O
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Lemma 7.7. Let N° € C — {N}. Set H = (N,N°) and let N, N7, N° be the
elements of C that lie in H. Suppose T € LoIN — N is conjugate in G to some
element in Ny and let 7/ € Ny induce the same automorphism on Ny as T.
Then T lies in Nf or N, i=0 orl.

7 7

Proof. By assumption 77" € Cg(Ng) = N, say 77/ = vv1, where v; € N,
i =0,1. As 7/ normalizes the groups N;’s, we have

2 T/ T’
1=7°"=wyj vy,

which implies that 7 and 7’ centralize vy and v1. By Lemma 5.5 (with Ty =
Fixs(7'), i =S — To) we have

[Fixs, (r)] = 8 N 75 = 2"

for 4,7 € {0,1}. We have Fixs, (7'vp) = So N Tp. If v; = 1, then Fixg, (1) =
So N To.

Now assume that 17 # 1; then vy fixes or interchanges the sets Sp N Ty
and Sy N T;. If, however, vy interchanges these sets, then Fixg,(7) = 0, a
contradiction. So v; fixes both sets and 7 = 7'y acts fixed-point-freely on
So N Tp. So Fixs, (1) = Sp N T in this case.

Arguing by symmetry, we get that Fixg, (7) equals S N T or S; N T;. This
implies that the sets Uy = Fixs(7) and Uy = S — Uy coincide with the orbits
of N7 or N°. Thus by Lemma 3.10 7 lies in one of these groups. The proof is
complete. O

Lemma 7.8. Let ) # M C C— {N}. Set H = (Ny(N) | M € M)N,
Hy=HNNLy, and Ny = mMEM NNO(M)- Let |N0| = 2"k Then:

(a) |H : Ho| = 2.
(b) Ho/N ~ E -SL(k,2) and E is elementary abelian of order 28—,

(¢) H/O2(H) ~ SL(k,2) and Oz(H)/N is elementary abelian. Moreover, we
have Npprepg Nt (M) N Ny (N) < Oo(H) for M € M.

(d) Let No be a subgroup of index 2 in Ny which contains N'O, Then there exist
precisely two groups M and M’ in C, such that Ng = Ny, (M) = Ny, (M').
Moreover Ny = Ny, (M) = Ny, (M') < H,y.

Proof. Using Cg(N) = Cg(Ng) = N we can (and will) consider H/N as a
subgroup of SL(N) and Hy/N as a subgroup of SL(Np).

(a) We know H < Ng(N) = NL, Hy < NLg, and [NL : NLg| < 2, that
is, |H : Hp| < 2. By (d.1) of Lemma 5.5 there is an element in Ny (V) that
interchanges Sy with S;. Hence |Np(N) : Npr(No)| = 2 and we get assertion
(a).

(b) By Lemma 5.4 [Ny (N)| = 22"~ and (M N N) x Na,(N) has order
22n=2" 50 that Np(No) = (M N N) x N (N) follows. Thus Ny (No)N/N
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induces on Ny (as a subgroup of SL(Ny)) an elementary abelian group of or-
der 2"~!, which fixes the subspace Ny, (M) of dimension n — 1 pointwise, i.e.
N (No)N/N is the full centralizer in SL(Np) of the hyperplane Ny, (M). We
recall from Proposition 7.5 that the centralizer of the subspace (and subgroup)
Np in SL(Np) has the shape X = E - SL(k,2), with E as in assertion (b). Then
by Proposition 7.5 (Na(No) | M € M) already induces the group X. But
Hy/N is isomorphic to a subgroup of X, i.e. Hy/N ~ X.

(¢) As Npr(Nog) = Nps(N7), we see that this group induces in SL(N;) an
elementary abelian group of order 2”1, which fixes the subspace Ny, (M). Set
Py = Oa(Hy) and Ny = (Nprens Nny (M). Then Hy/Py =~ SL(k,2) induces
on NZ-/]\~/'¢7 for ¢ = 0,1, the group SL(Ni/]vi). Let 0 € H — Hy, then o inter-
changes Ny with N7 by conjugation. In particular the mapping Hy/Py 3 7Py —
o~YroPy € Hy/P, induces an equivalence transformation between the two rep-
resentations of Hy/Py on NO/Z\NZO and N1/1\~]1 = Noa/]voa. Then o induces an
inner automorphism on Hy/FPy. But this group is isomorphic to its group of
inner automorphisms. This shows that the 2-radical Oy(H/Py) of H/Py has
order 2.

Let P be the pre-image of O2(H/P,). Then |P : Py| = 2. Now Ny (N)P/P =
N, (N)P/P (as Ny, (N)P/P is self-centralizing in H/P ~ SL(k,2)), i.e P =
(PN Ny (N))Py = (1)Py for some 7 € PN Ny (N). We have Cp,/n(7) >
N, (N)N/N. By symmetry Ny (N) covers P/Py for each M’ € M. Hence
there exists a 0 € Py, such that 7o € Ny (N). Thus Ny (N)N/N < Cpyn(70) =
Cp,/n (7). By assertion (a) of Proposition 7.5 7 centralizes Py /N and hence P/N
is elementary abelian.

Now assume that o € (Ve Nar(M') W Npyg(N). Let M' € M. Then
(Mg)? = M, for some a € {0,1}. Also by Lemma 5.4 Ny (N) = Ny (N)
(mod N), so that Ny (N)?N/N = Ny (N)N/N. By (f) of Proposition 7.5
(applied to H/P) we see that o € P.

(d) By assertion (d) of Lemma 7.5 there exists v € Hy, such that (M) is
the group of elements in SL(Np) that fix the hyperplane ]\70 pointwise. Since
M7 < (M7, N), assertion (d) follows from Lemma 7.6. O

Remark 7.9. (a) Let M be in M — {N}. By Lemma 5.4 the groups Njs(Np)
and Ny (Ng) centralize each other. So both groups N;, i = 0,1, lie in the
center of Py. As we have seen 0 € P — Py interchanges Z\~70 and ]\71, so that
[No x N1, 0] = [Ny x N1, P] has order 2"~*. For a given M € M we may choose
o € Ny (N). From Lemma 5.4 we deduce that [Ny x Ny, P] < M N N. This
implies that [N N (;en M| > 277,

(b) Under the assumptions of the lemma the group H contains precisely
2(2%F — 1) + 1 = 2kt — 1 groups, which lie in C. Moreover E € C lies in H, if
and only if Ny, (E) contains ();,c VN, (M): By Lemma 5.4 all groups from
C, which lie in H, are already conjugate in H. So for any M € C, M < H
we have that Ny, (V) contains No = [,c 0 VN, (M) by assertion (b). On the
other hand, as Hy/Ox(Hy) ~ SL(k,2), the group H, contains precisely 28 — 1
groups of the form Np;(No)N, M € C — {N}. By Lemma 7.7 we see that for
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E € C — {N}, Ng(No)N < Hy, there is precisely one more E’ € C for which
Ng(No)N and Ng/(Ng)N induce the same automorphism group on Ny. Also
there exists v € Hy and M € M, such that Ng(Np)N and Ny (No)N induce
the same automorphism group on Ny. By Lemma 7.7 E = M” or E/ = M".
The assertion follows.

For a subgroup K < G and a subset M C C, in what follows we write MNK
for the set of those M € M that lie in K.

Lemma 7.10. Let N e M CC, [M| > 1 and set M* = (M)NC. Then:
(a) |M*| =281 — 1 for some k € {1,...,n}.

(b) The group Nyrem NN (M) = Naseepqr Nn(M*) has order 22"~* and the
group Mare s Nno (M) = Nase e e Nvo (M*) has order 2"7F.

Proof. Set ]\71 = Nprem NN, (M), for i = 0,1 and define k by |Z\~70| = on—k
(= |N1| by Lemma 7.8). Then (a) holds by Remark 7.9. We prove assertion (b)
by induction on k.

Case k = 1. Then M* ={E,M,N} C H = (M, N), where M € M — {N}.
With the notation of Lemma 5.4 we have PN N = Ny (M) = Ny(E), BbNN =
Ny, (M) x Ny, (M) = Nn,(E) x Ny, (E) and assertion (b) follows.

Assume now k > 1 and pick two M, M’ € M, such that N £ (M, M’). Let
{M,M',E} = (M,M')NC. An element 7 € Ny(M) N Ny (M') normalizes M,
M’ and (M, M') and hence E too. Thus

NN(M)QNN(M/) = NN(M)HNN(MI)QNN(E) (4)
Similarly,
Nno (M) NNy (M') = Nyo(M) NNy, (M') 0 Ny (E). (5)

Denote by M the set of all those M € C that lie in groups of the form (M, M’),
M,M' € M. Then the ¥ = 1 case and Equations (4) and (5) show that

Nareamt NN (M) = Nze g Nn (M) and Nyrepng Nnvo (M) = Nire iz N, (M),
Induction on the size of M shows that these equation remain to be true if

we replace M by M*.

It remains to show that | (0, v Na(M)] = 22"7% and | ;e Nvo (M)] =
22n=k  To see this we choose M?,..., M* € M, such that Ny = N, N, (M?)
and we set Mo = {N,M*..., M*}. Then ./\/lo satisfies the assumptions of the
lemma, in particular M* = <./\/l0> NC and N = Maream Nv(M) = Ny (M?).
Since |N : Ny (M?%)| = 2 we have |N| > 22"~* and |Ny| > 2"*. However a non-
trivial Hy/N-module has dimension at least k (as Ho/O2(Ho) =~ SL(k, 2)), which
implies that |N0/N0\ > 2% and thus |N0| =27~k Also N/N is a nontrivial
H/O,(H)-module implying (as before) that |N/N| > 2*. Hence we obtain that
IN| = 22n—k. O
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We call a non-empty subset M of C saturated if M = (M) NC. We know
by Remark 7.9 that |M| = 25+ —1 for some k > 0. For any M € M and a = 0
or 1 we set:

M= () Nu('), My= () Nu, ().
M'eM M'e M

With these conventions we prove the following generalization of Lemma 5.4:

Theorem 7.11. Let M be a saturated subset of C such that |M| = 2k+1 — 1,
and set H = (M). Then the following hold:

(a) Q=Z(H)=Npepm M is elementary abelian of order on—k,

(b) Forany N°, N',... . N'e M, 1</{ <k, with N°nNN'n...AN*| =2,
there exist N*T1, ... N*¥ € M with H = (N°, N' ..., N*). Moreover, we
have Q = N°N--- N N*. For the remaining assertions N, N1, ... NF
will be as here.

(c) Let SJ be the two orbits of N7 on S, where 0 < j <k and a = 0,1. For
a = (a()vala' i ;ak) € {071}k+1 deﬁne

k
S(a) = S(ag,a1,...,ar) = ﬂ S;
i=0

and set
D ={S(a) | a € {0,1}*}.

Then |S(a)| = 2"7F for all a € {0,1}**! and |D| = 2¥*1. Moreover Q
acts reqularly on S(a) for all a and D is the set of Q-orbits.

(d) Set Py = (M, | M € M, a =0,1). Then Py is elementary abelian of
order 2(F+2)(=k) 4nq

Py=QxN)x--x N =QxN?x-..x NF.

(¢) Set P= (M | M € M). Then P = Oy(H) = (N°,... N*) and Py is the
kernel of the action of P on D. The group P has nilpotency class at most
2 and P/Q is elementary abelian. The group P/Py has order 2! and it
acts regularly on D.

(f) H/P ~ SL(k+1,2) and every H-composition factor on P/Q is the natural
SL(k 4 1, 2)-module.

Proof. We prove the theorem by induction on k. We also may assume without
loss of generality that N € M.

CASE k = 1. Let M, N be two extension groups in M. By Lemma 5.4 the
group H = (M, N) contains three groups from C, i.e. H = (M). Lemma 5.4,
Lemma 5.6, and Remark 5.7 imply assertions (a) - (f).
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CASE k > 1. We start with assertions (a) and (b). Set H, = (N°, N', ... N*),
M* = H;NC and assume |M*| = 2°*! — 1. Without loss of generality N = N°.
As |Ny, (N?)| =271 for i > 1, we have | Mo<i<e NNg(Ni)| =2n7s > 2nt e,
s <. By Lemma 7.10 (<<, NNg(Ni) = Mareme Nno(M). If s < £, then by
induction Z(H,) = N°N---N N* has order 2"~%, contradicting our assumption.

Hence | (e pqe Nyvo(M)] = 277 and [M*| = 241 — 1 by Remark 7.9. Pick
Nt e M=MTE Ny pqe Nyo (M) < Niyo (NH1), we get Nl e M* by Re-
;nark 7.9 (b), a contradiction. Thus |(Ny<;<, Nno(N') : No<icorr Vg (V)] =

By part (a) of Remark 7.9 we know [N°N...N N1 > 2741 je |[NON
. AN NN .. .N N < 2. We claim that equality holds. Write o €
Z(Hy) = N°N...Nn N*as 0 = o901, where 0; € N;, i = 0,1. Then each
mapping Z(Hy) > o — o; € N; is injective, as Z(Hy) N N; = 1. Moreover, if
o€ N°N...n N then 0g € MNyjcpss Nnp(N?), which has order 27~¢~1.
This shows the claim. Now induction on £ implies assertions (a) and (b).

To (c): Let B be the set of Q-orbits on S. Since @ acts semiregularly on
S, each orbit has length 2" 7% so that |[B| = 2¥*1. By (b) (and Lemma 5.4)
each S(a) is Q-invariant. So D = B, once we show that each S(a) # (. For

a sequence (ag,...,ax_2) € {0,1}*7! and a,b € {0,1} we consider the sets
T = Mocick186, NS To = Mocick1 S, NSy, and Tt = TN T, =
S(ag,...,ar_2,a,b). By induction |7¢| = | 73| = 2" ~**! and we have partitions

T = TPUT® and T, = TLUT,E. We have to show that all the 7,% are non-empty.

Assume, for instance, that 7, = (. Then 7° = 7P = T has size Qn—k+l,
In particular Q° = mggkk Nt and Q; = No<i<kitk—1 N? act faithfglly and
regularly on 7°. Set Q = (QO,QQ, which is elementary abelian, as Q < NO.
Since [Q° N Q1] = 2"7F, we have |Q = 2" F2. If k > 2, then @ (< NN N*')
acts semiregularly on S, i.e |[7°| > |Q|, a contradiction.

So assume k = 2 and, without loss of generality, assume that ag = 0. Then
SINSE = SINSE and S§NST = SYNS? are sets of size 2! and by Lemma 5.4
the two groups NV Nli(Ng), i = 1,2, act faithfully and semiregularly on the first
set. Pick S € 8§ N'S). There exist precisely 2"~! elements v € N{ with
Sv e8NS} For ue NN{(NS) we have

Sv = Svu = Suv* = Sv#,

which forces v = v#. Hence Cyo(Ny1(Ng)) = Cno(Nyz(Ng)) is a group of
order 2"~1. This shows that N1 (NQ)N and Ny (NQ)N induce in SL(NY) the
same group of transvections centralizing the hyperplane Cyo(Ny: (NY)). By
Remark 7.9 (b) (or Lemma 7.7) we conclude that N? < (N° N'), a contradic-
tion. Now assertion (c) follows.

To (d): Set Poo = (Q,NY,...,N§). We claim that (1) Poo = Q x N x -+ x
N} and (2) Py = Pyo.

By Lemma 7.10 we know N] = No<i<k NNg(Ni) and |NJ| = 2%, By
assertion (a) of Lemma 5.5 each orbit S¢, where 0 < ¢ < k, a = 0,1, is fixed
under ]\78 Thus Py fixes each Q-orbit in D.
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Assume that we have already shown
(NE,...,NEY = N} x --- x Nk

The group NY acts faithfully on S(1,0,0,...,0), whereas N} x --- x N fixes
this set pointwise. Hence NJ N (Ng x --- x NF) =1 and

(NO.NE,. .. NE) = N9 x Ng - x N

follows. Considering the actions of @) and J\~fg X +ee X ]\~/'(’f on §(0,0,0,...,0), we
finally obtain assertion (1).

We turn to assertion (2). We observe that Py, N N° = Q x NO: Otherwise
(as Q x N < PyoNN°) we would have N°NNE x - - - x NF # 1. But non-identity
elements from this group have fixed-points in S and 8V which is impossible.
Thus |Pyo N /N°| = 2F(»=%) and PyyN° /N (as a subgroup of SL(NY)) stabilizes
the chain 1 < N9 < NY. The stabilizer of this chain in SL(NJ) however has
order 2F("=F) e PyyN®/NV is the full stabilizer of this chain. Also PyN°/N°
stabilizes this chain, i.e.

Py < PooN° = N°(Ng x -+ x N§),

and, as we have seen before, NO N (N} x --- x N¥) = 1. Let 1 # o be in P,.
Adjusting o if necessary with an element from Pyy, we may also assume that
o € N° and that o has fixed-points in SJ. But then o € N§ and o fixes every
S(0,*,...,*) pointwise, but acts fixed-point-freely on each orbit of the form
S(1,%,...,%). This implies that o € NO: otherwise N < (N$,0) < N and
therefore the orbits of this group in &Y would have a length strictly greater than
27~k which is impossible. Thus claim (2) is also true. Assertion (d) follows
from (1) and (2).
o (e): Clearly,
[N°, N'] < N°n N

Let 7; € N%, i = 0,1. Then 0 = 7oy € Ox(H*), H* = (Np;(N*¥) | M € M)N
by assertion (c) of Lemma 7.8. As Oo(H¥)/N* is elementary abelian, we get
[70,71] = 0% € N*. Hence [N°,N'] < Q by an obvious induction. Since any
pair M, E € M is conjugate in H to N°, N', we see that [M, E] < Q. So P/Q
is an elementary abelian 2-group.

By definition P is a normal subgroup of H. We claim, that P is the kernel
of the action of P on D: R

Denote by P this kernel (of course Py < P) The group PN O/NY stabilizes
the chain 1 < N0 < N§, since P normalizes N and PNO/NO lies in the
stabilizer of the chain 1 < N0 < N as a subgroup of SL(N). As before we
obtain P < PyN. Let o be an element in p. Adjusting this element with an
element from P, we may even assume that ¢ € N and as in the verification
of (d) this leads to 0 € @ x N x N}, i.e. P = P,. In particular P/P, acts
faithfully on D.
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Claim: We have |P/Py| = 28! and P/P, acts regularly on D.

By Lemma 7.10, we have 2" = [N : N9| = |S9|. So N° is transitive on S9
and (by symmetry) on SY. Therefore NO permutes transitively all orbits of the
form S(0,%,...,%) and all orbits of the form S(1,x,...,x). These two subsets
of D have size 2¥. Hence \]VOPO/P0| =2k = |]\~f0 : ]\~f8|, ie. NN Py = ng. This
shows that NP, /Py acts regularly on both subsets of D. Of course P/P, is
transitive on D and P/P, is abelian and therefore P/Py is regular on D. This
implies that |P/P,| = 2¥*1 and hence the claim.

Finally we show that P = O2(H):

Set R = O2(H) (i.e. P < R). The group R acts by conjugation on the set
M of size 251 — 1. Thus R normalizes one and hence all subgroups in M. Set
Ki; = (Ny(N) | M € M)RN < Ng(N) (where N = N°). By Theorem 3.6
there exists a normal subgroup Ky, with |K; : K| < 2, such that Ky normalizes
Np and Np. But we have seen that P does not leave invariant the orbits S and
810, i.e. |K1 : K0| = 2.

By Lemma 7.8 Ky/N induces on N2, for a = 0,1, by conjugation the cen-
tralizer of the subspace Ng in SL(NY?), whereas PyN/N induces the 2-radical of
this group. As PN > PyN and |K; : Ky| = 2 we have that PN/N = RN/N is
the 2-radical of K7 /N, in particular

PN = RN.

Assume R > P. As PN = RN, we have RN N > PN N. We know that PN N
is transitive on S, so that 2" = |SJ| = |PNN : PN Nog| = [RN N : RN Ny
and thus RN Ny > PN Np. _ _ B

Let o € (RNNy)—(PNNy), i.e. |[(No, o) : No| =2, as PNNy = Ny. Pick M €
M, such that (Ny,o) < Ny, (M). In fact, ¢ € Ny, (M), by Lemma 5.6 (a).
Then o induces an involution on My/My, i.e. we have O rto /31y 7 Lar /o, (as

o € Ny — Ny). By Lemma 7.8 there exist a M’ € M and ¢’ € Ny (M), such
that (00’)M0/M0 has order 3. This contradicts o € R = O2(H). The verification
of (e) is complete.

To (f): We observe that H = (N?| 0 < i < k) acts as a permutation group
on D and that, by (e), Py is a normal subgroup of H. Note that every H
composition factor on P/Q is a Fy[H/P]-module by [1, (5.5)].

We first provide an H-decomposition of Py/Q. For R < ) denote by Py(R)
the kernel of the action of Py on the R-orbits. Decompose p € R as p = pgp1,
pi € N2, i = 0,1. Then py and p; are in Py(R) (For instance p; acts on Sy
like p and it acts trivially on Sy, i.e. p1 € Py(R)). Hence |Py(R) N N§| = |R).
Moreover Py(R) N Py(R') = 1 for R < Q and RN R’ = 1, as a non-trivial
intersection of an R-orbit with an R’-orbit has size 1, since @ acts faithfully
and regularly on each of its orbits. Clearly, each Py(R) is normal in H, as R
and P, are normal subgroups. Let Q = Ry X --- X R,,_j with subgroups R; of
order 2. Then X; = (Py(R;) N NQ) x -+ x (Py(R;) N ]V,?) has order 28! and
hence Q x X1 X - - X X,,_j, has order 2k+2(n=F) o Py =Qx X1 X+ X Xp_p.
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Then
Po/Q=X1Q/Q x -+ x X, xQ/Q

is an H-invariant decomposition.

Set KO = (Ny1(NO), ..., Nyx(N9)).

We know from Lemma 7.8 that K°N/N has the form E - SL(k, 2), where E
is the elementary abelian 2-radical of K°N/N. Hence Ko/ﬁ ~ SL(k,2), where
P = 05(KY).

Set HY = (N',...,N*) and P° = O5(H"). By induction H°/P° ~ SL(k,?2)
and all H%-composition factors in P°/Z(H") are natural. Here we call a com-
position factor natural, if it is the natural module for SL(k,2) ~ H°/P°. Now
K9P/ PO is isomorphic to a subgroup of SL(k,2) and as K° N P° < P, we see
that K°/(K°N PY) is the extension of a 2-group by SL(k,2). This shows that
K°/(K°N P%) ~ SL(k,2) and K°n P° = P.

Clearly, P N Z(H®) = Q, so that all composition factors in P/Q of K°
are natural. This shows that K° has in X;Q/Q one natural and one trivial
composition factor. Indeed, the trivial composition factor is given by Ng Q/QN
X:Q/Q. As N < P for 1 < i <k, we sec that P £ P°. Thus ﬁ/(ﬁﬂPO)
contains at least one natural composition factor.

The group K' = (Nyo(NY), Ny2(N1), ..., Nyx(N1)) has the analogous
properties to those of K° (but leaves invariant N instead of N 9). So the group
K = (K° K') induces on X;Q/Q as well on P/P, the (maximal possible) group
SL(k + 1,2) and all composition factors of H on P/Q are natural. O

7.1 Proofs of Theorems 7.1 and 7.3

Proof. (Theorem 7.1) The first assertion follows from a Frattini argument: Let
o be an element in G. Then N? € C. By Proposition 5.1 there exists a v € G*
with N°7 = N, i.e. 0y € Ng(N) or G = G*Ng(N).

Assume first that G is not transitive on S. Then Sy and S; are the G-orbits.
Assertion (a) follows from Lemma 3.9.

Assume from now on that G is transitive on S. By Corollary 3.7 Ng(N) is
transitive too, i.e. there exists an element o € Ng(N) that interchanges Sp and
S1. The proof of Lemma 3.9 shows that 5 and ° are isotopic.

If C = {N}, then N is normal in G, and we have assertion (b) by Lemma 3.9.
If N is not normal, we get assertion (c¢) by Theorem 7.11. O

Proof. (Theorem 7.3) The assertion G = G* Ng(IV) has the same verification as
in the previous proof.

Assume first that G is not transitive on S. Then Sy and S; are the G-orbits.
Assertion (a) now follows from Lemma 3.9.

Assume from now on that G is transitive on S. By Corollary 3.7 Ng(N) is
transitive too, i.e. there exists an element @ € Ng(N) that interchanges Sp and
S1. So fo and f; are isotopically linked by the proof of Lemma 3.9. If C = {N},
then N is normal, we get assertion (b) of Theorem 7.1 by Lemma 3.9. If N is
not normal, we obtain assertion (c¢) by Theorem 7.11. O
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Remark 7.12. Let S be the extension of a bilinear DHO or the graph of the
extension of quadratic APN functions. Assume in addition in the DHO case
that S is bilinear and in the APN case assume, that the extension is quadratic.
We sketch in this situation a simpler, alternative way, to prove Theorems 7.1
and 7.3. The basis for this approach is the following lemma, which is implicitly
contained in [5].

Lemma 7.13. Let T be a translation group of S that is normalized by the
extension group N. Let U be the ambient space of S. Then N induces as
a subgroup of GL(U/Cy(T)) the 2-radical of the stabilizer of a hyperplane of
U/Cy(T).

Proof. As N normalizes T, we see that TN is a 2-group and hence by The-
orem 3.6 both groups normalize each other. Therefore Cy(T) = [U,T] C
Wo + W1, where W; is defined as in Remark 3.5. As N normalizes T, it
fixes the subspace Cy(T). Thus NT/T is the stabilizer of the hyperplane
(Wo +W1)/Cu(T) of U/Cy(T). O

Proof. (Sketch of the simplified verification) Let G be the automorphism group
of § (DHO) or the linear part of the automorphism group of & (APN) and let
C be the class of extension groups in G. We assume |C| > 1.

Then T is normal in G: Let K be the group generated by the the conjugates
of T and assume that ' < K. By [5, Thm. 59] M = O3(K) € C. As
M char K <G, we obtain M < G, which contradicts |C| > 1.

Set H = (C). Then HT/T is canonically isomorphic to a subgroup of the
autotopism group. Therefore HT /T acts faithfully on U/Cy(T) by [5, Prop.
3.9]. Assume that S has rank n 4+ 1. By Lemma 7.13 and Proposition 7.5 there
exists a number k (1 <k < n) such that H/(TNH) ~ HT/T ~ E - S with E
elementary abelian of order 25+ (=) and § ~ SL(k+1,2). By [5, Lemma 4.5]
T NN is a hyperplane of T, so that T'= (T'N N, T N M) for any two M, N € C,
ie. T < H. Pick Ny,...,Ngy1 € C, such that H = (Ny,..., Ni11)T. Then we
have Q = TN Ny N---Npy1 < Z(H) and |Q| > 2"~*. But as a cyclic group of
order 2¥*1 — 1 in H centralizes this group, we get |Q| = 2" . Set P = Oy(H).
It is now easy to see that [T, P] < Q = Z(H). Hence P has class at most 2,
P/Q is elementary abelian of order 2(k+1)(n—k+1) “and all composition factors
of P/Q are natural SL(k + 1,2)-modules. O

We add an observation about the natural composition factors of SL(k+1, 2).
For k > 2 the natural SL(k + 1, 2)-module is not equivalent to its dual module
(for instance the roles of stabilizers of points and hyperplanes are interchanged).
Indeed the SL(k + 1, 2)-composition factors of P/Q are not pairwise equivalent:
the factor T/Q is dual to the composition factors in P/T. Inspecting the proof
of Theorem 7.11 one observes a further phenomenon: the composition factors
in Py/Q are dual to the composition factor P/P,.
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